Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-organizing nanoparticles: a model for tomorrow's nanofactories

Abstract:
With inspiration from bacteria and butterflies, researchers at Stockholm University have developed a new method that shows how nanomaterials can be produced in the future. In an article in the prestigious journal Proceedings of the National Academy of Sciences, Professor Lennart Bergström shows how a glass bottle and a simple hobby magnet can be used to produce and arrange extremely small cubes of iron oxide in a perfectly checkered pattern.

Self-organizing nanoparticles: a model for tomorrow's nanofactories

Stockholm, Sweden | Posted on October 31st, 2007

The new method can give magnetic films with superior information storage capacity," says Lennart Bergström.

To produce nanoparticles with a defined form and size and at the same time organize them in well-ordered structures is one of the few realistic ways of producing tomorrow's nanomaterials on an industrial scale. It sounds like a dream, but the fact is that nature uses these construction principles in order to make the wings of a butterfly shimmer in all the colors of the rainbow and to create a compass needle of magnetic nanoparticles in certain bacteria.

In the article, Lennart Bergström and his colleagues show how it is possible to create a self-organizing system in which the system itself can achieve a flawless structure. Instead of slowly building up these intricate structures by for example etching, the particles are "programmed" to build the desired structure themselves. Nanoparticles are ideal building blocks for creating two- and three-dimensional structures with tailor-made properties. It is possible to combine metals, semiconductors, and magnetic nanoparticles in one and the same material, thereby obtaining entirely new combinations of properties.

"Our vision is to get nanoparticles to collaborate and construct complicated structures at will," says Lennart Bergström. "New types of nanostructured materials with unique characteristics, such as magnetic and catalytic properties, can then be created where they are most needed and in such a way that they can be readily reused. This opens up exciting possibilities to tailor the structure and function of materials, a goal for all materials chemists."

Name of article: "Magnetic field induced assembly of oriented superlattices from maghemite nanocubes"A. Ahniyaz, Y. Sakamoto, and L. Bergström, PNAS, ("early edition" published at end of week 44)

####

Contacts:
Prof. Lennart Bergström
Department of Physical, Inorganic, and Structural Chemistry
Stockholm University
cell phone: +46 (0)70-5179991
phone: +46 (0)8-16 23 68


For images: phone: +46 (0)8-16 40 90
e-mail

Copyright © Stockholm University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic