Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-organizing nanoparticles: a model for tomorrow's nanofactories

Abstract:
With inspiration from bacteria and butterflies, researchers at Stockholm University have developed a new method that shows how nanomaterials can be produced in the future. In an article in the prestigious journal Proceedings of the National Academy of Sciences, Professor Lennart Bergström shows how a glass bottle and a simple hobby magnet can be used to produce and arrange extremely small cubes of iron oxide in a perfectly checkered pattern.

Self-organizing nanoparticles: a model for tomorrow's nanofactories

Stockholm, Sweden | Posted on October 31st, 2007

The new method can give magnetic films with superior information storage capacity," says Lennart Bergström.

To produce nanoparticles with a defined form and size and at the same time organize them in well-ordered structures is one of the few realistic ways of producing tomorrow's nanomaterials on an industrial scale. It sounds like a dream, but the fact is that nature uses these construction principles in order to make the wings of a butterfly shimmer in all the colors of the rainbow and to create a compass needle of magnetic nanoparticles in certain bacteria.

In the article, Lennart Bergström and his colleagues show how it is possible to create a self-organizing system in which the system itself can achieve a flawless structure. Instead of slowly building up these intricate structures by for example etching, the particles are "programmed" to build the desired structure themselves. Nanoparticles are ideal building blocks for creating two- and three-dimensional structures with tailor-made properties. It is possible to combine metals, semiconductors, and magnetic nanoparticles in one and the same material, thereby obtaining entirely new combinations of properties.

"Our vision is to get nanoparticles to collaborate and construct complicated structures at will," says Lennart Bergström. "New types of nanostructured materials with unique characteristics, such as magnetic and catalytic properties, can then be created where they are most needed and in such a way that they can be readily reused. This opens up exciting possibilities to tailor the structure and function of materials, a goal for all materials chemists."

Name of article: "Magnetic field induced assembly of oriented superlattices from maghemite nanocubes"A. Ahniyaz, Y. Sakamoto, and L. Bergström, PNAS, ("early edition" published at end of week 44)

####

Contacts:
Prof. Lennart Bergström
Department of Physical, Inorganic, and Structural Chemistry
Stockholm University
cell phone: +46 (0)70-5179991
phone: +46 (0)8-16 23 68


For images: phone: +46 (0)8-16 40 90
e-mail

Copyright © Stockholm University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project