Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ASU researchers give memory a boost

Abstract:
ASU's Center for Applied Nanoionics (CANi) has a new take on old memory, one that promises to boost the performance, capacity and battery life of consumer electronics from digital cameras to laptops. Best of all, it is cheap, made from common materials and compatible with just about anything currently on the market.

ASU researchers give memory a boost

Tempe, AZ | Posted on October 23rd, 2007

"In using readily available materials, we've provided a way for this memory to be made at essentially zero extra cost, because the materials you need are already used in the chips - all you have to do is mix them in a slightly different way," says Michael Kozicki, director of CANi.

The research was conducted in collaboration with Research Center Jülich in Germany. It was published in the October 2007 issue of the journal IEEE Transactions on Electron Devices in the article "Bipolar and Unipolar Resistive Switching in Cu-doped SiO2." The team included Christina Schindler, on loan from Germany to CANi, Sarath Chandran Puthen Thermadam of CANi, Kozicki, and Rainer Waser of the Institute for Solid State Research and Center for Nanoelectronics Systems and Information Technology in Jülich.

For some time now, conventional computer memory has been heading toward a crunch - a physical limit of how much storage can be crammed into a given space. Traditional electronics begins to break down at the nanoscale - the scale of individual molecules - because pushing electronics closer together creates more heat and greater power dissipation. As consumer electronics such as MP3 players and digital cameras shrink, the need for more memory in a smaller space grows.

Researchers have been approaching the problem from two directions, either trying to leapfrog to the next generation of memory, or refining current memory. CANi took both approaches, amping up performance via special materials while also switching from charge-based storage to resistance-based storage.

"We've developed a new type of old memory, but really it is the perfect memory for what's going to be required in future generations," Kozicki says. "It's very low-energy. You can scale it down to the nanoscale. You can pack a lot of it into a small space."

CANi was also able to overcome the limitations of conventional electronics by using nanoionics, a technique for moving tiny bits of matter around on a chip. Instead of moving electrons among charged particles, called ions, as in traditional electronics, nanoionics moves the ions themselves.

"We've actually been able to move something the size of a virus between electrodes to switch them from a high resistance to a low resistance, which is great for memory," Kozicki says.

Most memory today stores information as charge; in the binary language of computers, this means that an abundance of charge at a particular site on a chip translated as a "one," and a lack of charge is translated as a "zero." The problem with such memory is that the smaller its physical size, the less charge it can reliably store.

Resistance-based memory, on the other hand, does not suffer from this problem and can even store multiple bits on one site. Moreover, once the resistance is set, it does not change, even when the power is switched off.

CANi's previous high-performance resistance-change memory has been licensed to three companies, including Micron Technology and Qimonda, and has attracted the attention of Samsung, Sony and IBM. However, it used some materials, specifically silver and germanium sulfide, previously unused by industry and therefore required new processes to be developed.

The real advancement of CANi's newest memory is that researchers discovered a way to use materials already common in chip manufacturing. Although "doping" - mixing silicon with small amounts of conductive materials such as boron, arsenic or phosphorus - has been common practice for years, copper in silicon dioxide was largely unheard of. In fact, it was strictly avoided.

"People have actually gone to great lengths to keep the silicon oxide and the copper apart," Kozicki says. "But in our case, we are very interested in mixing the copper with the oxide - basically, so that it would become mobile and move around in the material."

"Because it can move in there, we can make a sort of nanoscale switch," he adds. "This very, very small switch can be used in memory applications, storing information via a range of resistance values."

Industry has already shown interest in the new memory and, if all goes well, consumers could see it on the market within a few years.

"What it means is we could replace all of the memory in all sorts of applications - from laptops to iPods to cell phones to whatever - with this one type of memory," Kozicki says. "Because it is so low energy, we can pack a lot of memory and not drain battery power; and it's not volatile - you can switch everything off and retain information. What makes this significant is that we are using materials that are already in use in the semiconductor industry to create a component that's never been thought of before."

####

For more information, please click here

Contacts:
Nicholas Gerbis

(480) 965-9690

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Memory Technology

Nano piano's lullaby could mean storage breakthrough March 16th, 2015

Nanotechnology Helps Increasing Rate of Digital Data Processing, Storage March 9th, 2015

Iranian Scientists Apply Nanotechnology to Produce Electrical Insulator March 7th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Discoveries

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE