Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ASU researchers give memory a boost

Abstract:
ASU's Center for Applied Nanoionics (CANi) has a new take on old memory, one that promises to boost the performance, capacity and battery life of consumer electronics from digital cameras to laptops. Best of all, it is cheap, made from common materials and compatible with just about anything currently on the market.

ASU researchers give memory a boost

Tempe, AZ | Posted on October 23rd, 2007

"In using readily available materials, we've provided a way for this memory to be made at essentially zero extra cost, because the materials you need are already used in the chips - all you have to do is mix them in a slightly different way," says Michael Kozicki, director of CANi.

The research was conducted in collaboration with Research Center Jülich in Germany. It was published in the October 2007 issue of the journal IEEE Transactions on Electron Devices in the article "Bipolar and Unipolar Resistive Switching in Cu-doped SiO2." The team included Christina Schindler, on loan from Germany to CANi, Sarath Chandran Puthen Thermadam of CANi, Kozicki, and Rainer Waser of the Institute for Solid State Research and Center for Nanoelectronics Systems and Information Technology in Jülich.

For some time now, conventional computer memory has been heading toward a crunch - a physical limit of how much storage can be crammed into a given space. Traditional electronics begins to break down at the nanoscale - the scale of individual molecules - because pushing electronics closer together creates more heat and greater power dissipation. As consumer electronics such as MP3 players and digital cameras shrink, the need for more memory in a smaller space grows.

Researchers have been approaching the problem from two directions, either trying to leapfrog to the next generation of memory, or refining current memory. CANi took both approaches, amping up performance via special materials while also switching from charge-based storage to resistance-based storage.

"We've developed a new type of old memory, but really it is the perfect memory for what's going to be required in future generations," Kozicki says. "It's very low-energy. You can scale it down to the nanoscale. You can pack a lot of it into a small space."

CANi was also able to overcome the limitations of conventional electronics by using nanoionics, a technique for moving tiny bits of matter around on a chip. Instead of moving electrons among charged particles, called ions, as in traditional electronics, nanoionics moves the ions themselves.

"We've actually been able to move something the size of a virus between electrodes to switch them from a high resistance to a low resistance, which is great for memory," Kozicki says.

Most memory today stores information as charge; in the binary language of computers, this means that an abundance of charge at a particular site on a chip translated as a "one," and a lack of charge is translated as a "zero." The problem with such memory is that the smaller its physical size, the less charge it can reliably store.

Resistance-based memory, on the other hand, does not suffer from this problem and can even store multiple bits on one site. Moreover, once the resistance is set, it does not change, even when the power is switched off.

CANi's previous high-performance resistance-change memory has been licensed to three companies, including Micron Technology and Qimonda, and has attracted the attention of Samsung, Sony and IBM. However, it used some materials, specifically silver and germanium sulfide, previously unused by industry and therefore required new processes to be developed.

The real advancement of CANi's newest memory is that researchers discovered a way to use materials already common in chip manufacturing. Although "doping" - mixing silicon with small amounts of conductive materials such as boron, arsenic or phosphorus - has been common practice for years, copper in silicon dioxide was largely unheard of. In fact, it was strictly avoided.

"People have actually gone to great lengths to keep the silicon oxide and the copper apart," Kozicki says. "But in our case, we are very interested in mixing the copper with the oxide - basically, so that it would become mobile and move around in the material."

"Because it can move in there, we can make a sort of nanoscale switch," he adds. "This very, very small switch can be used in memory applications, storing information via a range of resistance values."

Industry has already shown interest in the new memory and, if all goes well, consumers could see it on the market within a few years.

"What it means is we could replace all of the memory in all sorts of applications - from laptops to iPods to cell phones to whatever - with this one type of memory," Kozicki says. "Because it is so low energy, we can pack a lot of memory and not drain battery power; and it's not volatile - you can switch everything off and retain information. What makes this significant is that we are using materials that are already in use in the semiconductor industry to create a component that's never been thought of before."

####

For more information, please click here

Contacts:
Nicholas Gerbis

(480) 965-9690

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project