Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanowire generates its own electricity

Kris Snibbe/Harvard News Office

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry
Kris Snibbe/Harvard News Office

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry

Abstract:
Microscopic wire has photovoltaic properties

Nanowire generates its own electricity

Cambridge, MA | Posted on October 21st, 2007

Harvard chemists have built a new wire out of photosensitive materials that is hundreds of times smaller than a human hair. The wire not only carries electricity to be used in vanishingly small circuits, but generates power as well.

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry, and colleagues created the nanowire out of three different kinds of silicon with different electrical properties. The silicon is wrapped in layers to create the wire. When light falls on the outer material, a process begins due to the interaction of the core with the shell layers, leading to the creation of electrical charges.

The work was described in the Oct. 18 issue of the journal Nature.

The idea of creating nanoscale photovoltaics is not new, Lieber said, but prior efforts used organic compounds in combination with semiconductor nanostructures that had lower efficiency and that degraded under concentrated sunlight. Lieber's materials have several advantages, he said. The materials are more efficient, converting 3.4 percent of the sunlight into electricity; they can withstand concentrated light without deteriorating, gaining efficiency up to about 5 percent; and they're as cheap to make as other related nanoscale photovoltaic devices.

"The real [question] is whether there's a new geometry that will lead to better photovoltaic technology," Lieber said. "We worked on coaxial geometry."

The most recent development builds on Lieber's considerable prior work on nanoscale devices. He has developed sensors with potential bioterrorism applications that can detect a single virus or other particle, nanowire arrays that can detect signals in individual neurons, and a cracker-sized detector for cancer.

A cheap nanoscale power source broadens the potential applications of such nanoscale devices. Though the tiny photovoltaic cells can generate enough electricity to power a similarly tiny circuit, Lieber said they're not yet efficient enough to have applications on the scale of commercial power generation.

Commercial solar cells, he said, have efficiencies around 20 percent, compared with 3.4 percent for his nano-solar cells. One avenue of future research, Lieber said, will be to explore ways to boost efficiency of the nanowire photovoltaics. If they can reach 10 to 15 percent, he said, their lower cost of production they can be made from relatively inexpensive materials and don't require clean rooms to produce may make them useful in larger-scale applications.

"There's no physical reason it couldn't be higher," Lieber said. "I'm pretty optimistic that we'll be able to track down the efficiency issue."

Until then, Lieber sees a future for the nanowire photovoltaics in niche applications, such as multiple distributed sensors or durable, flexible devices, possibly sewn into clothing or worn as a patch.

"It will have to be unique to be an economically viable application, some place where you want durability and flexibility, where if it gets destroyed, people don't care," Lieber said.

####

For more information, please click here

Contacts:
Harvard University
Office of News and Public Affairs
Holyoke Center 1060
Cambridge, MA 02138 USA
Tel: 617-495-1585

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic