Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanowire generates its own electricity

Kris Snibbe/Harvard News Office

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry
Kris Snibbe/Harvard News Office

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry

Abstract:
Microscopic wire has photovoltaic properties

Nanowire generates its own electricity

Cambridge, MA | Posted on October 21st, 2007

Harvard chemists have built a new wire out of photosensitive materials that is hundreds of times smaller than a human hair. The wire not only carries electricity to be used in vanishingly small circuits, but generates power as well.

Charles M. Lieber, the Mark Hyman Jr. Professor of Chemistry, and colleagues created the nanowire out of three different kinds of silicon with different electrical properties. The silicon is wrapped in layers to create the wire. When light falls on the outer material, a process begins due to the interaction of the core with the shell layers, leading to the creation of electrical charges.

The work was described in the Oct. 18 issue of the journal Nature.

The idea of creating nanoscale photovoltaics is not new, Lieber said, but prior efforts used organic compounds in combination with semiconductor nanostructures that had lower efficiency and that degraded under concentrated sunlight. Lieber's materials have several advantages, he said. The materials are more efficient, converting 3.4 percent of the sunlight into electricity; they can withstand concentrated light without deteriorating, gaining efficiency up to about 5 percent; and they're as cheap to make as other related nanoscale photovoltaic devices.

"The real [question] is whether there's a new geometry that will lead to better photovoltaic technology," Lieber said. "We worked on coaxial geometry."

The most recent development builds on Lieber's considerable prior work on nanoscale devices. He has developed sensors with potential bioterrorism applications that can detect a single virus or other particle, nanowire arrays that can detect signals in individual neurons, and a cracker-sized detector for cancer.

A cheap nanoscale power source broadens the potential applications of such nanoscale devices. Though the tiny photovoltaic cells can generate enough electricity to power a similarly tiny circuit, Lieber said they're not yet efficient enough to have applications on the scale of commercial power generation.

Commercial solar cells, he said, have efficiencies around 20 percent, compared with 3.4 percent for his nano-solar cells. One avenue of future research, Lieber said, will be to explore ways to boost efficiency of the nanowire photovoltaics. If they can reach 10 to 15 percent, he said, their lower cost of production they can be made from relatively inexpensive materials and don't require clean rooms to produce may make them useful in larger-scale applications.

"There's no physical reason it couldn't be higher," Lieber said. "I'm pretty optimistic that we'll be able to track down the efficiency issue."

Until then, Lieber sees a future for the nanowire photovoltaics in niche applications, such as multiple distributed sensors or durable, flexible devices, possibly sewn into clothing or worn as a patch.

"It will have to be unique to be an economically viable application, some place where you want durability and flexibility, where if it gets destroyed, people don't care," Lieber said.

####

For more information, please click here

Contacts:
Harvard University
Office of News and Public Affairs
Holyoke Center 1060
Cambridge, MA 02138 USA
Tel: 617-495-1585

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Announcements

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Energy

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Solar/Photovoltaic

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project