Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Photonic Gel Films Hold Promise

Photonic gel crystals demonstrate the "tunability" of materials made from alternating layers of hard and soft polymers. The soft polymers are easily swollen with liquid or vapor, causing the materials to reflect different colors of light based on the way their molecules are chemically "tuned".

Credit: Courtesy of Edwin L. Thomas, MIT
Photonic gel crystals demonstrate the "tunability" of materials made from alternating layers of hard and soft polymers. The soft polymers are easily swollen with liquid or vapor, causing the materials to reflect different colors of light based on the way their molecules are chemically "tuned".

Credit: Courtesy of Edwin L. Thomas, MIT

Abstract:
By alternating layers of two different polymers - one rigid and glassy, the other soft and easily swollen with liquid or vapor - researchers funded by the National Science Foundation (NSF) report they've created photonic gel crystals that can be tuned to reflect light of many different colors across the visible and near-infrared spectrum.

Photonic Gel Films Hold Promise

Cambridge, MA | Posted on October 21st, 2007

The research results, reported in the Oct. 21 online issue of Nature Materials by Principal Investigator Edwin Thomas and his colleagues at the Massachusetts Institute of Technology's department of materials science and engineering, demonstrate the degree to which these photonic materials are tunable through changes in the soft layer's thickness and index of refraction. The responsiveness of the photonic crystals makes them likely candidates for active components of display, sensory or telecommunication devices.

"This is an ingenious and easy-to-implement method for making photonic materials whose optical properties can be readily tuned over a wide range [of the spectrum]," said Andrew Lovinger, director of the polymers program at NSF, which funded this research.

In one example, the researchers show very large, reversible optical changes by varying the salt content of a water solution in which these films are dipped. Multicolor patterns can be made by sequential coating of films, with the color of each region depending on the degree to which their molecules are chemically interconnected.

"We expect these photonic gels will lead to many novel applications, including colorimetric sensors, active components of simple display devices, and electrically controlled tunable optically pumped lasers, photonic switches and multiband filters," Thomas said.

NSF funded the research in 2003 through a three-year grant aimed at creating new nanomaterials that are tunable through magnetic, chemical or other techniques. Following the discovery of intriguing new effects by Thomas and his colleagues involving the interaction of light and sound in these nanomaterials, his grant was extended for two additional years through a "special creativity award."

-NSF-

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Diane E. Banegas
NSF
(703) 292-8070


Anne Trafton
Massachusetts Institute of Technology
(617) 253-6936


Program Contacts
Andrew Lovinger
National Science Foundation
(703) 292-4933


Principal Investigators
Edwin Thomas
Massachusetts Institute of Technology
617-253-6901

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NSF Home Page

NSF News

For the News Media

Science and Engineering Statistics

Awards Searches

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic