Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Intelligent extruder plans its own growth

A RWT321 Series Digital TorqSense Sensor
A RWT321 Series Digital TorqSense Sensor

Abstract:
A bench top extruder developed at Bradford University is able to collect data about its own operation and to determine a wide range of characteristics of the material with which it is working.

Intelligent extruder plans its own growth

Bicester, UK | Posted on October 20th, 2007

Most of the intelligence is provided via a digital TorqSense torque sensor, which uniquely collects data via a radio signal rather than being hard wired to the extruder, and passes it onto a computer for analysis.


The extruder, developed under a commercial contract by Dr Raj Patel, supervised by Professor Hadj Benkreira, is specifically for use with fine chemicals, as used in industries such as electronics, plastics, nanotechnology and pharmaceuticals. One element of the design brief was that it should be easy to scale up to create full sized production extruders.

Dr Patel explains: "This requirement immediately made me think of using a TorqSense. Comprehensive mapping of torque requirement and how it varies at different speed and with different materials allows us to quickly define the power train that will be required on production-scale machines."

He had used TorqSense on earlier projects, and particularly liked the fact that it was a digital system with digital outputs and the lack of hard wiring and slip rings made resetting the extruder between the many test runs far simpler and quicker.

"As well as developing the extruder design, we are charged with developing new materials. For instance the semiconductor industry adds conductive carbon to silicon to make silicon wafer substrates. Each such recipe has different mixing and extruding characteristics, which we are measuring."

"Significantly the end users often need to optimise certain characteristics of their materials, such as elasticity or conductivity. Surprisingly many of these can be measured directly through the TorqSense because they have a proportional affect on the material's viscosity and therefore torque requirement."

TorqSense torque transducers, available from Sensor Technology of Bicester, use two tiny ceramic piezoelectric frequency resonating combs otherwise called Surface Acoustic Wave (SAW) devices that are fixed onto the shaft of the torque sensor to measure applied torque. As the torque changes the combs vary their spacing and consequently the resonant frequency of the SAWs changes proportionally to the torque applied in the rotating shaft. In effect the combs are frequency dependent strain gauges that measure changes in resonant frequency of the shaft. A wireless radio frequency (RF) coupling is used to interrogate the SAWs and transfer the data signal to a pick-up head.

The same RF coupling is used to supply power to the SAW devices and because the gauges are based on piezo technology they need less than one milliwatt of power. This arrangement does away completely with the difficulties of fitting slip rings and maintains the measurement quality throughout an extended test run.

TorqSense embraces all the advantages of SAW technology, including no load imparted or extra drag to the drive mechanism under investigation. As it is fundamentally a digital system it has a broader signal bandwidth than other analogue based technologies and electromagnetic interference is eliminated.

This extruder project is a follow-on to earlier work on a mini-mixer for using in formulating high performance plastics, in which a TorqSense played a similar role. The technologies that Dr Patel and his colleagues have developed will transfer directly to the plastic industry and other soft solid sectors giving rapidly recovery of the development costs.

"The software we have developed to analyse the extruder's performance and materials properties," says Dr Patel, "is now being restructured so that it runs on a PLC rather than a PC. As such it will be able to control production sized units in real-time, making them self-adjusting and ensuring perfect results every time."

####

About Sensor Technology
Sensor Technology has been providing customers with rotary torque measurement solutions for over 30 years, developing its own technology for the instrumentation and OEM markets.

Our digital 'RWT310/320 Series' torque sensors includes the latest non-contact TorqSense technology with integrated electronics. We also offer Optical and Strain Gauge technology torque transducers. TorqView, based on NI LabVIEW, is available as an easy to use Advanced Torque Monitoring software tool to assist data recording.

For more information, please click here

Contacts:
Sensor Technology Ltd
68 Heyford Park
Upper Heyford
BICESTER
Oxfordshire OX25 5HD
United Kingdom
Tel: +44 (0)1869 238400
Fax: +44 (0)1869 238401
Email:

Copyright © Sensor Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Tools

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic