Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-C Awarded $2.9 Million by National Institute of Standards and Technology (NIST) for Innovative Technology R&D

Abstract:
Under Advanced Technology Program (ATP), Nano-C to Develop High Yield Manufacturing Process for Nanostructured Carbon Materials

Nano-C Awarded $2.9 Million by National Institute of Standards and Technology (NIST) for Innovative Technology R&D

Westwood, MA | Posted on October 16th, 2007

Nano-C, Inc., leading developer of nanostructured carbon materials, today announced the company has been selected by the National Institute of Standards and Technology (NIST) to develop a novel manufacturing process for nanostructured carbon materials, including fullerenes and single-walled carbon nanotubes (SWCNT), to dramatically increase yields and reduce costs, enabling wider application. The company was selected under the agency's Advanced Technology Program (ATP). The project is expected to last three years with a projected $2.9 million in funding. The company is cost sharing approximately 30% of project.

"ATP projects are selected based on scientific and technical merit, as well as potential for broad-based economic benefits," commented Viktor Vejins, president and CEO at Nano-C. "Substantial due diligence was done by ATP to validate high-market potential of nanostructured carbon materials and the high-risk, high-reward nature of the work. We are delighted to have been selected to develop a manufacturing process that will further advance nanostructured carbon materials for wider use."

Nanostructured carbon materials are expected to represent a significant part of the projected multi-billion dollar worldwide nanotechnology market. These new materials have been proposed for a wide range of high-impact applications, ranging from alternative energy to new and improved medical therapies to environmentally sound materials that have extended lives. In spite of the benefits that can be realized from the use of these materials, commercial application has lagged due to current high manufacturing costs and the need to further modify the materials to meet specific application requirements.

This three-year effort aims to establish a new manufacturing system to allow for selective manufacture of fullerenes and nanotubes, increasing their yield ten-fold. When combined with Nano-C's advanced separation, purification and chemical functionalization technology, these materials will see a dramatic increase in the range of viable applications, including organic photovoltaics, transparent conducting films, lithium ion battery electrodes, high strength composite materials and medical treatments.

Vejins noted, "Nanostructured carbon materials have the potential to touch nearly every sector of the economy, but for the near-term, we see the highest potential in organic photovoltaics."

For more information on the NIST Advanced Technology Program, visit: http://www.atp.nist.gov/atp/about.htm .

####

About Nano-C, Inc.
Located in Westwood, Massachusetts, Nano-C is the leading developer of nanostructured carbon materials, including fullerenes, single-walled carbon nanotubes (SWCNT) and their chemical derivatives. The company was founded in 2001 by Jack Howard, a Massachusetts Institute of Technology (MIT) Professor Emeritus, and world-renowned expert in the manufacture of nanostructured carbon materials. Nano-C's mission is to play a key role in enabling applications of these nanostructured carbon materials and is committed to their responsible development and use. Nano-C is a privately held company.

For more information, please click here

Contacts:
Tracy Wemett
BroadPR
+1-617-868-5031


Michael Baum
NIST
+1-301-975-2763

Copyright © Nano-C, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Announcements

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic