Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-C Awarded $2.9 Million by National Institute of Standards and Technology (NIST) for Innovative Technology R&D

Abstract:
Under Advanced Technology Program (ATP), Nano-C to Develop High Yield Manufacturing Process for Nanostructured Carbon Materials

Nano-C Awarded $2.9 Million by National Institute of Standards and Technology (NIST) for Innovative Technology R&D

Westwood, MA | Posted on October 16th, 2007

Nano-C, Inc., leading developer of nanostructured carbon materials, today announced the company has been selected by the National Institute of Standards and Technology (NIST) to develop a novel manufacturing process for nanostructured carbon materials, including fullerenes and single-walled carbon nanotubes (SWCNT), to dramatically increase yields and reduce costs, enabling wider application. The company was selected under the agency's Advanced Technology Program (ATP). The project is expected to last three years with a projected $2.9 million in funding. The company is cost sharing approximately 30% of project.

"ATP projects are selected based on scientific and technical merit, as well as potential for broad-based economic benefits," commented Viktor Vejins, president and CEO at Nano-C. "Substantial due diligence was done by ATP to validate high-market potential of nanostructured carbon materials and the high-risk, high-reward nature of the work. We are delighted to have been selected to develop a manufacturing process that will further advance nanostructured carbon materials for wider use."

Nanostructured carbon materials are expected to represent a significant part of the projected multi-billion dollar worldwide nanotechnology market. These new materials have been proposed for a wide range of high-impact applications, ranging from alternative energy to new and improved medical therapies to environmentally sound materials that have extended lives. In spite of the benefits that can be realized from the use of these materials, commercial application has lagged due to current high manufacturing costs and the need to further modify the materials to meet specific application requirements.

This three-year effort aims to establish a new manufacturing system to allow for selective manufacture of fullerenes and nanotubes, increasing their yield ten-fold. When combined with Nano-C's advanced separation, purification and chemical functionalization technology, these materials will see a dramatic increase in the range of viable applications, including organic photovoltaics, transparent conducting films, lithium ion battery electrodes, high strength composite materials and medical treatments.

Vejins noted, "Nanostructured carbon materials have the potential to touch nearly every sector of the economy, but for the near-term, we see the highest potential in organic photovoltaics."

For more information on the NIST Advanced Technology Program, visit: http://www.atp.nist.gov/atp/about.htm .

####

About Nano-C, Inc.
Located in Westwood, Massachusetts, Nano-C is the leading developer of nanostructured carbon materials, including fullerenes, single-walled carbon nanotubes (SWCNT) and their chemical derivatives. The company was founded in 2001 by Jack Howard, a Massachusetts Institute of Technology (MIT) Professor Emeritus, and world-renowned expert in the manufacture of nanostructured carbon materials. Nano-C's mission is to play a key role in enabling applications of these nanostructured carbon materials and is committed to their responsible development and use. Nano-C is a privately held company.

For more information, please click here

Contacts:
Tracy Wemett
BroadPR
+1-617-868-5031


Michael Baum
NIST
+1-301-975-2763

Copyright © Nano-C, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development ConferenceŽ: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project