Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists Create Method to Measure the Performance of Carbon Nanotubes as Building Blocks for Ultra Tiny Computer Chips of the Future

Vibrations give color to light allowing us to locally measure charges in a nanoscale electronic device.
Vibrations give color to light allowing us to locally measure charges in a nanoscale electronic device.

Abstract:
Observing Vibration and Light at the Nanoscale to Advance the Use of Carbon Nanotubes as Semiconductors and Metal Wires Inside Chips

IBM Scientists Create Method to Measure the Performance of Carbon Nanotubes as Building Blocks for Ultra Tiny Computer Chips of the Future

YORKTOWN HEIGHTS, NY | Posted on October 14th, 2007

IBM (NYSE: IBM) scientists today announced that they have measured the distribution of electrical charges in tubes of carbon that measure less than 2 nanometers in diameter, 50,000 times thinner than a strand of human hair.

This novel technique, which relies on the interactions between electrons and phonons, provides a detailed understanding of the electrical behavior of carbon nanotubes, a material that shows promise as a building block for much smaller, faster and lower power computer chips compared to today's conventional silicon transistors.

Phonons are the atomic vibrations that occur inside material, and can determine the material's thermal and electrical conductivity. Electrons carry and produce the current. Both are important features of materials that can be used to carry electrical signals and perform computations.

The interaction between electrons and phonons can release heat and impede electrical flow inside computer chips. By understanding the interaction of electrons and phonons in carbon nanotubes, the researchers have developed a better way to measure their suitability as wires and semiconductors inside of future computer chips.

In order to make carbon nanotubes useful in building logic circuitry, scientists are pushing to demonstrate their high speed, high packing density and low power consumption capabilities as well as the ability to make them viable for potential mass production.

"The success of nanoelectronics will largely depend on the ability to prepare well characterized and reproducible nano-structures, such as carbon nanotubes," said Dr. Phaedon Avouris, IBM Fellow and lead researcher for IBM's carbon nanotube efforts. "Using this technique, we are now able to see and understand the local electronic behavior of individual carbon nanotubes."

To date, researchers have been able to build carbon nanotube transistors with superior performance, but have been challenged with reproducibility issues. Carbon nanotubes are sensitive to environmental influences. For example, their properties can be altered by foreign substances, affecting the flow of electrical current and changing device performance. These interactions are typically local and change the density of electrons in the various devices of an integrated circuit, and even along a single nanotube.

A better understanding of how the local environment affects the electrical charge of a carbon nanotube is needed to allow the fabrication of more reliable transistors. Therefore, the ability to measure local electron density changes in a nanotube is essential. A team of researchers from the IBM's T.J. Watson Research Center in Yorktown Heights have just solved this problem.

This achievement was published online October 14, 2007 in the journal Nature Nanotechnology. The team monitored the color of the light scattered from the nanotube (Raman Effect), and measured small changes in the color of the light corresponding to changes in the electron density in the nanotube. The technique takes advantage of the interaction between the motion of the atoms and the motion of the electrons, so that electron density changes can be reflected in changes of the frequency of the vibrational motion of the nanotube atoms.

In March 2006, IBM announced that its researchers built the first complete electronic integrated circuit around a single carbon nanotube molecule.

For more information about IBM Research, visit http://www.research.ibm.com/ .

####

For more information, please click here

Contacts:
Lizette Kodama
IBM Media Relations
914-945-2703

Copyright © Market Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Discoveries

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Announcements

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic