Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > IBM Scientists Create Method to Measure the Performance of Carbon Nanotubes as Building Blocks for Ultra Tiny Computer Chips of the Future

Vibrations give color to light allowing us to locally measure charges in a nanoscale electronic device.
Vibrations give color to light allowing us to locally measure charges in a nanoscale electronic device.

Abstract:
Observing Vibration and Light at the Nanoscale to Advance the Use of Carbon Nanotubes as Semiconductors and Metal Wires Inside Chips

IBM Scientists Create Method to Measure the Performance of Carbon Nanotubes as Building Blocks for Ultra Tiny Computer Chips of the Future

YORKTOWN HEIGHTS, NY | Posted on October 14th, 2007

IBM (NYSE: IBM) scientists today announced that they have measured the distribution of electrical charges in tubes of carbon that measure less than 2 nanometers in diameter, 50,000 times thinner than a strand of human hair.

This novel technique, which relies on the interactions between electrons and phonons, provides a detailed understanding of the electrical behavior of carbon nanotubes, a material that shows promise as a building block for much smaller, faster and lower power computer chips compared to today's conventional silicon transistors.

Phonons are the atomic vibrations that occur inside material, and can determine the material's thermal and electrical conductivity. Electrons carry and produce the current. Both are important features of materials that can be used to carry electrical signals and perform computations.

The interaction between electrons and phonons can release heat and impede electrical flow inside computer chips. By understanding the interaction of electrons and phonons in carbon nanotubes, the researchers have developed a better way to measure their suitability as wires and semiconductors inside of future computer chips.

In order to make carbon nanotubes useful in building logic circuitry, scientists are pushing to demonstrate their high speed, high packing density and low power consumption capabilities as well as the ability to make them viable for potential mass production.

"The success of nanoelectronics will largely depend on the ability to prepare well characterized and reproducible nano-structures, such as carbon nanotubes," said Dr. Phaedon Avouris, IBM Fellow and lead researcher for IBM's carbon nanotube efforts. "Using this technique, we are now able to see and understand the local electronic behavior of individual carbon nanotubes."

To date, researchers have been able to build carbon nanotube transistors with superior performance, but have been challenged with reproducibility issues. Carbon nanotubes are sensitive to environmental influences. For example, their properties can be altered by foreign substances, affecting the flow of electrical current and changing device performance. These interactions are typically local and change the density of electrons in the various devices of an integrated circuit, and even along a single nanotube.

A better understanding of how the local environment affects the electrical charge of a carbon nanotube is needed to allow the fabrication of more reliable transistors. Therefore, the ability to measure local electron density changes in a nanotube is essential. A team of researchers from the IBM's T.J. Watson Research Center in Yorktown Heights have just solved this problem.

This achievement was published online October 14, 2007 in the journal Nature Nanotechnology. The team monitored the color of the light scattered from the nanotube (Raman Effect), and measured small changes in the color of the light corresponding to changes in the electron density in the nanotube. The technique takes advantage of the interaction between the motion of the atoms and the motion of the electrons, so that electron density changes can be reflected in changes of the frequency of the vibrational motion of the nanotube atoms.

In March 2006, IBM announced that its researchers built the first complete electronic integrated circuit around a single carbon nanotube molecule.

For more information about IBM Research, visit http://www.research.ibm.com/ .

####

For more information, please click here

Contacts:
Lizette Kodama
IBM Media Relations
914-945-2703

Copyright © Market Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Nanotubes/Buckyballs

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Discoveries

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Announcements

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE