Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Finding Opens Path for Designing Novel Complex Oxide Nanomaterials

Atomic orbitals, illustrated above, were once thought to be inactive and play no role in the physical properties of materials. But it turns out that these orbitals do change at the interface of certain types of nanostructures, report physicist Jacques Chakhalian and his colleagues in the journal Science.
Atomic orbitals, illustrated above, were once thought to be inactive and play no role in the physical properties of materials. But it turns out that these orbitals do change at the interface of certain types of nanostructures, report physicist Jacques Chakhalian and his colleagues in the journal Science.

Abstract:
A University of Arkansas researcher and his colleagues have found a novel way to "look" at atomic orbitals, and have directly shown for the first time that they change substantially when interacting at the interface of a ferromagnet and a high-temperature superconductor.

New Finding Opens Path for Designing Novel Complex Oxide Nanomaterials

FAYETTEVILLE, AR | Posted on October 12th, 2007

This finding opens up a new way of designing nanoscale superconducting materials and fundamentally changes scientific convention, which suggests that only electron spin and atomic charge - not atomic orbitals - influence the properties of superconducting nanostructures. It also has implications for interfaces between other complex oxide materials.

Jacques Chakhalian, assistant professor of physics in the J. William Fulbright College of Arts and Sciences, and his colleagues will publish their findings online at the Science Express Web site, published by the journal Science, on Thursday, Oct. 11. See http://www.sciencexpress.org, and also http://www.aaas.org.

Until now, materials science researchers believed that an electron's charge and spin influenced the characteristics of conventional bulk materials. Atomic orbitals, which consist of the patterns of electron density that may be formed in an atom, were previously thought to be inactive.

"In conventional materials like copper or silicon, you could account for everything you could see through charge and spin," Chakhalian said. Further, orbitals have proved difficult to "see" through physical experimentation, so it wasn't possible to examine any changes in orbital symmetry that might be taking place at the interface.

Chakhalian's work has focused on what happens at the interface between two different materials - for instance, superconductors and ferromagnets, two materials with properties that were thought to be incompatible with each other in bulk. In 2006, he and his colleagues created the first high-quality material to have both superconducting and ferromagnetic properties, and they used that material in this experiment.

Chakhalian and his colleagues worked with synchrotron radiation at the Advanced Photon Source, Argonne National Laboratory in Argonne, Ill., to examine the interface between a high-temperature superconducting material containing copper oxide and a ferromagnetic material containing manganese oxide. The synchrotron light is electromagnetic radiation of varying wavelengths that can be tuned to a specific wavelength and polarization for a particular experiment. Unlike conventional X-rays, which diffuse through space, the synchrotron light beams are sharply focused, like a laser beam with extreme brilliance.

The researchers forced the two materials into unusual quantum states. Using a technique called resonant X-ray absorption, they were able to "look" at the atomic orbitals at the interface and determine their symmetry in a non-destructive way.

They found that the atomic orbitals changed the nature of their symmetry at the interface and created a covalent bond between the copper and manganese atoms. This bonding does not exist in the bulk of the individual materials

"When you merge these two materials, the atomic orbitals at the interface become important. They start contributing to the electronic properties of the material," Chakhalian said. "This opens a new way of designing materials. We can design quantum materials with engineered physical properties."

The discovery may allow researchers to manipulate nanoscale superconductivity at the interface - opening the possibility of creating room-temperature semiconductors.

Generators that use superconducting materials generate electricity extremely efficiently, at half the size of conventional generators. General Electric estimates the potential market for superconducting generators to be between $20 billion and $30 billion over the next decade.

Chakhalian's colleagues include J.W. Freeland and M. van Veenendaal of the Advanced Photon Source, Argonne National Laboratory, Argonne, Ill.; and H.-U. Habermeier, G. Cristiani, G. Khaliullin and B. Keimer of the Max Planck Institute for Solid State Research in Stuttgart, Germany.

####

About University of Arkansas
Students at the University of Arkansas engage in research, invention and development - even the undergraduate students - and so could you. The university has more than 200 programs of study, from history to engineering, from drama to geosciences, from accounting to logistics, from animal science to landscape architecture, and everything in between. More than a fourth of our students take classes abroad during their college career, but they call the University of Arkansas home.

For more information, please click here

Contacts:
Jacques Chakhalian
assistant professor, physics
J. William Fulbright College of Arts and Sciences
(479) 575-4313


Melissa Lutz Blouin
director of science and research communications
University Relations
(479) 575-5555

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Materials/Metamaterials

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project