Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New force-fluorescence device measures motion previously undetectable

Physics professor Taekjip Ha led the research group that devised the technique that can detect subtle conformational changes of a biomolecule at an extremely low applied force.
Physics professor Taekjip Ha led the research group that devised the technique that can detect subtle conformational changes of a biomolecule at an extremely low applied force.

Abstract:
A hybrid device combining force and fluorescence developed by researchers at the University of Illinois has made possible the accurate detection of nanometer-scale motion of biomolecules caused by pico-newton forces.

New force-fluorescence device measures motion previously undetectable

CHAMPAIGN, IL | Posted on October 11th, 2007

"By combining single-molecule fluorescence resonance energy transfer and an optical trap, we now have a technique that can detect subtle conformational changes of a biomolecule at an extremely low applied force," said U. of I. physics professor Taekjip Ha, the corresponding author of a paper to appear in the Oct. 12 issue of the journal Science.

The hybrid technique, demonstrated in the Science paper on the dynamics of Holliday junctions, is also applicable to other nucleic acid systems and their interaction with proteins and enzymes.

The Holliday junction is a four-stranded DNA structure that forms during homologous recombination - for example, when damaged DNA is repaired. The junction is named after geneticist Robin Holliday, who proposed the model of DNA-strand exchange in 1964.

To better understand the mechanisms and functions of proteins that interact with the Holliday junction, researchers must first understand the structural and dynamic properties of the junction itself.

But purely mechanical measurement techniques can not detect the tiny changes that occur in biomolecules in the regime of weak forces. Ha and colleagues have solved this problem by combining the exquisite force control of an optical trap and the precise measurement capabilities of single-molecule fluorescence resonance energy transfer.

To use single-molecule fluorescence resonance energy transfer, researchers first attach two dye molecules - one green and one red - to the molecule they want to study. Next, they excite the green dye with a laser. Some of the energy moves from the green dye to the red dye, depending upon the distance between them. The changing ratio of the two intensities indicates the relative movement of the two dyes. Therefore, by monitoring the brightness of the two dyes, the researchers can determine the motion of the molecule.

The optical trap, on the other hand, functions somewhat like the fictional tractor beam in Star Trek. In this case, a focused laser beam locks onto a microsphere attached to one end of the molecule to be studied. The optical trap can then pull on the molecule like a pair of tweezers.

"By combining the two techniques, we get the best of both worlds," said Ha, who also is an affiliate of the university's Institute for Genomic Biology and of the Howard Hughes Medical Institute. "Using the optical trap, we can pull on DNA strands with forces as small as half a pico-newton. Using single-molecule fluorescence resonance energy transfer, we can measure the resulting conformational changes with nanometer precision."

By probing the dynamics of the Holliday junction in response to pulling forces in three different directions, the researchers mapped the location of the transition states and deduced the structure of the transient species present during the conformational changes.

"Based on our previous studies, we knew the Holliday junction fluctuated between two structures," Ha said, "but how it moved from one place to the other, and what intermediates were visited along the pathway, were unknown."

With this latest work, the researchers have deduced the pathway of the conformational flipping of the Holliday junction, and determined the intermediate structure is similar to that of a Holliday junction bound to its own processing enzyme.

"The next challenge is to obtain a timeline of movement by force, for example, due to the action of DNA processing enzymes, and correlate it with the enzyme conformational changes simultaneously measured by fluorescence," Ha said.

With Ha, co-authors of the paper are former U. of I. postdoctoral research associate and lead-author Sungchul Hohng (now at Seoul National University); physics professor Klaus Schulten; graduate students Ruobo Zhou, Michelle Nahas and Jin Yu; and molecular biology professor David M. J. Lilley at the University of Dundee, UK.

The work was funded by the National Science Foundation and the National Institutes of Health.

To reach Taekjip Ha, call 217-265-0717; e-mail:

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic