Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

Abstract:
Veratag announced today a definitive agreement with Cornell Research Foundation, Inc to license the intellectual property surrounding the use of MEMS resonators for unique identification in radio frequency identification (RFID) and electronic lock and key systems. Like snowflakes, each MEMS resonator, called a MEMflake™, is unique, and produces a unique analog signal that is essentially irreproducible either by cloning or imitating the signal. These unclonable MEMflakes, therefore, provide a high level of security which is simple to use and cost effective.

Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

ALBANY, NY | Posted on October 3rd, 2007

MEMflakes combine two characteristics of MEMS resonators to ensure effective security. First, the natural production variation associated with the manufacture of MEMS devices means that identically manufactured resonators will produce slightly different analog signals. With sufficiently complex resonators, those signals have enough information in them to uniquely identify an almost unlimited number of unique devices. Because of the random nature of MEMflake production, the odds of cloning a particular MEMflake are less than 1 in a trillion trillion (i.e. 1 followed by 24 zeros). Secondly, MEMS resonator signals are fairly unique in terms of the sharpness, or quality, of their frequency peaks in high frequency ranges. They are so unique that duplicating some of the characteristics of MEMS resonators can realistically only be done using other MEMS resonators. In addition, MEMS resonators can be interrogated in a manner which can prove that they are, in fact, mechanical resonators and not other types of electronics trying to imitate that behavior. The combination of these two characteristics provides a high level of security via a unique unclonable signature.

With the addition of an antenna, MEMflakes can be used for RFID applications. In an RFID implementation, MEMflakes possess a number of advantageous features: a low energy requirement means MEMflakes can be put on passive tags; compatibility with other chip designs so other functionality can be paired with a MEMflake; fast read times for high throughput applications; a simplified backend that does not require a secure database, secure keys, or secure communications; and a small footprint allowing integration with existing RFID chip designs without significant additional costs.

"The combination of uniqueness and irreproducibility make MEMflakes truly special," said John Schnieter, CEO of Veratag. "But, the best part is that MEMflakes used in RFID implementations meet the various criteria necessary for a successful technology. We believe the RFID community is waiting for a simple, cost effective means to securely identify a given tag, and MEMflakes provide that."

"Veratag will initially focus on marketing our products for unique identification for applications such as access cards, smart cards, identity cards and passports, as well as anti-counterfeiting for pharmaceutical and other high end goods," he added.

"We are very pleased to see a team come together around this promising technology, one that has the experience and expertise to drive it into the marketplace," said Alan Paau, Vice Provost for Technology Transfer and Economic Development at Cornell University. "We look forward to working with this strong management team as they commercialize another exciting nanotechnology resulting from Cornell research."

####

About Veratag
Veratag’s mission is to change the cost-benefit equation for security by essentially creating electronic fingerprints which can be put onto chips and other electronics and used for identification and authentication in radio frequency identification (RFID) and electronic lock and key implementations. The basis of Veratag’s product offering is a micro-electro-mechanical systems (MEMS) resonator, called a MEMflake, which produces unique analog signals that can be read by contact or contactless readers. Each MEMflake is unique, essentially unclonable, and its signal is irreproducible using other means.

About Cornell Research Foundation

Cornell Research Foundation is a wholly-owned subsidiary of Cornell University formed for the sole purpose of managing intellectual property that arises from research activities at the university to benefit the public and to advance the university’s land grant missions.

For more information, please click here

Contacts:
Veratag
Ted Eveleth, 518-331-1133

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project