Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

Abstract:
Veratag announced today a definitive agreement with Cornell Research Foundation, Inc to license the intellectual property surrounding the use of MEMS resonators for unique identification in radio frequency identification (RFID) and electronic lock and key systems. Like snowflakes, each MEMS resonator, called a MEMflake™, is unique, and produces a unique analog signal that is essentially irreproducible either by cloning or imitating the signal. These unclonable MEMflakes, therefore, provide a high level of security which is simple to use and cost effective.

Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

ALBANY, NY | Posted on October 3rd, 2007

MEMflakes combine two characteristics of MEMS resonators to ensure effective security. First, the natural production variation associated with the manufacture of MEMS devices means that identically manufactured resonators will produce slightly different analog signals. With sufficiently complex resonators, those signals have enough information in them to uniquely identify an almost unlimited number of unique devices. Because of the random nature of MEMflake production, the odds of cloning a particular MEMflake are less than 1 in a trillion trillion (i.e. 1 followed by 24 zeros). Secondly, MEMS resonator signals are fairly unique in terms of the sharpness, or quality, of their frequency peaks in high frequency ranges. They are so unique that duplicating some of the characteristics of MEMS resonators can realistically only be done using other MEMS resonators. In addition, MEMS resonators can be interrogated in a manner which can prove that they are, in fact, mechanical resonators and not other types of electronics trying to imitate that behavior. The combination of these two characteristics provides a high level of security via a unique unclonable signature.

With the addition of an antenna, MEMflakes can be used for RFID applications. In an RFID implementation, MEMflakes possess a number of advantageous features: a low energy requirement means MEMflakes can be put on passive tags; compatibility with other chip designs so other functionality can be paired with a MEMflake; fast read times for high throughput applications; a simplified backend that does not require a secure database, secure keys, or secure communications; and a small footprint allowing integration with existing RFID chip designs without significant additional costs.

"The combination of uniqueness and irreproducibility make MEMflakes truly special," said John Schnieter, CEO of Veratag. "But, the best part is that MEMflakes used in RFID implementations meet the various criteria necessary for a successful technology. We believe the RFID community is waiting for a simple, cost effective means to securely identify a given tag, and MEMflakes provide that."

"Veratag will initially focus on marketing our products for unique identification for applications such as access cards, smart cards, identity cards and passports, as well as anti-counterfeiting for pharmaceutical and other high end goods," he added.

"We are very pleased to see a team come together around this promising technology, one that has the experience and expertise to drive it into the marketplace," said Alan Paau, Vice Provost for Technology Transfer and Economic Development at Cornell University. "We look forward to working with this strong management team as they commercialize another exciting nanotechnology resulting from Cornell research."

####

About Veratag
Veratag’s mission is to change the cost-benefit equation for security by essentially creating electronic fingerprints which can be put onto chips and other electronics and used for identification and authentication in radio frequency identification (RFID) and electronic lock and key implementations. The basis of Veratag’s product offering is a micro-electro-mechanical systems (MEMS) resonator, called a MEMflake, which produces unique analog signals that can be read by contact or contactless readers. Each MEMflake is unique, essentially unclonable, and its signal is irreproducible using other means.

About Cornell Research Foundation

Cornell Research Foundation is a wholly-owned subsidiary of Cornell University formed for the sole purpose of managing intellectual property that arises from research activities at the university to benefit the public and to advance the university’s land grant missions.

For more information, please click here

Contacts:
Veratag
Ted Eveleth, 518-331-1133

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

MEMS

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Announcements

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Patents/IP/Tech Transfer/Licensing

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Solegear Further Strengthens its Product Development Team: New Hire Seeks to Create New, Disruptive, Sustainable Materials June 17th, 2015

High-tech nanofibres could help nutrients in food hit the spot June 17th, 2015

RFID

Designer electronics out of the printer: Optimized printing process enables custom organic electronics June 16th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project