Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

Abstract:
Veratag announced today a definitive agreement with Cornell Research Foundation, Inc to license the intellectual property surrounding the use of MEMS resonators for unique identification in radio frequency identification (RFID) and electronic lock and key systems. Like snowflakes, each MEMS resonator, called a MEMflake™, is unique, and produces a unique analog signal that is essentially irreproducible either by cloning or imitating the signal. These unclonable MEMflakes, therefore, provide a high level of security which is simple to use and cost effective.

Veratag Signs Exclusive License Agreement with Cornell University for MEMS-Based Security Protocol

ALBANY, NY | Posted on October 3rd, 2007

MEMflakes combine two characteristics of MEMS resonators to ensure effective security. First, the natural production variation associated with the manufacture of MEMS devices means that identically manufactured resonators will produce slightly different analog signals. With sufficiently complex resonators, those signals have enough information in them to uniquely identify an almost unlimited number of unique devices. Because of the random nature of MEMflake production, the odds of cloning a particular MEMflake are less than 1 in a trillion trillion (i.e. 1 followed by 24 zeros). Secondly, MEMS resonator signals are fairly unique in terms of the sharpness, or quality, of their frequency peaks in high frequency ranges. They are so unique that duplicating some of the characteristics of MEMS resonators can realistically only be done using other MEMS resonators. In addition, MEMS resonators can be interrogated in a manner which can prove that they are, in fact, mechanical resonators and not other types of electronics trying to imitate that behavior. The combination of these two characteristics provides a high level of security via a unique unclonable signature.

With the addition of an antenna, MEMflakes can be used for RFID applications. In an RFID implementation, MEMflakes possess a number of advantageous features: a low energy requirement means MEMflakes can be put on passive tags; compatibility with other chip designs so other functionality can be paired with a MEMflake; fast read times for high throughput applications; a simplified backend that does not require a secure database, secure keys, or secure communications; and a small footprint allowing integration with existing RFID chip designs without significant additional costs.

"The combination of uniqueness and irreproducibility make MEMflakes truly special," said John Schnieter, CEO of Veratag. "But, the best part is that MEMflakes used in RFID implementations meet the various criteria necessary for a successful technology. We believe the RFID community is waiting for a simple, cost effective means to securely identify a given tag, and MEMflakes provide that."

"Veratag will initially focus on marketing our products for unique identification for applications such as access cards, smart cards, identity cards and passports, as well as anti-counterfeiting for pharmaceutical and other high end goods," he added.

"We are very pleased to see a team come together around this promising technology, one that has the experience and expertise to drive it into the marketplace," said Alan Paau, Vice Provost for Technology Transfer and Economic Development at Cornell University. "We look forward to working with this strong management team as they commercialize another exciting nanotechnology resulting from Cornell research."

####

About Veratag
Veratag’s mission is to change the cost-benefit equation for security by essentially creating electronic fingerprints which can be put onto chips and other electronics and used for identification and authentication in radio frequency identification (RFID) and electronic lock and key implementations. The basis of Veratag’s product offering is a micro-electro-mechanical systems (MEMS) resonator, called a MEMflake, which produces unique analog signals that can be read by contact or contactless readers. Each MEMflake is unique, essentially unclonable, and its signal is irreproducible using other means.

About Cornell Research Foundation

Cornell Research Foundation is a wholly-owned subsidiary of Cornell University formed for the sole purpose of managing intellectual property that arises from research activities at the university to benefit the public and to advance the university’s land grant missions.

For more information, please click here

Contacts:
Veratag
Ted Eveleth, 518-331-1133

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

MEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Ziptronix and EV Group Demonstrate Submicron Accuracies for Wafer-to-Wafer Hybrid Bonding: Enables Fine-Pitch Connections for 3D Applications, Including Image Sensors, Memory and 3D SoCs May 27th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Patents/IP/Tech Transfer/Licensing

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

RFID

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

IDTechEx launches online Market Intelligence Portal May 23rd, 2013

Mincom Capital Inc. and Group Nanoxplore Inc. Sign Letter of Intent for a Qualifying Transaction April 10th, 2013

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE