Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome

Abstract:
Project Combines Novel Gene Sequencing Chemistry and Advanced Nanofluidic Technology to Sequence Entire Human Genome in Eight Hours at a Cost of $100

BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome

PHILADELPHIA, PA and MOUNTAIN VIEW, CA | Posted on September 28th, 2007

BioNanomatrix, Inc., a company developing breakthrough nanoscale whole
genome imaging and analytic platforms, and Complete Genomics Inc. (CGI), a
high- performance genome sequencing company, today announced that they have
formed a joint venture that has received an $8.8 million grant award from
the U.S. National Institute of Standards and Technology Advanced Technology
Program (NIST-ATP) to develop a system capable of sequencing the entire
human genome in eight hours at a cost of less than $100.

"We and our colleagues at CGI are thrilled that NIST-ATP sees the
potential of our combined technologies to achieve this ambitious goal,"
said Dr. Michael Boyce-Jacino, president and CEO of BioNanomatrix. "Our
joint venture team will pool our innovative technologies--Complete
Genomics' novel sequencing chemistry and our advanced nanofluidic
platform--to develop a breakthrough technology that will radically decrease
the cost and time required for sequencing the genome, making it possible
for the first time for genetic information to be incorporated into routine
medical care."

Today, the cost of sequencing the roughly three billion base pairs in
the human genome is over $100,000. Despite advances that promise to reduce
this cost significantly in the coming years, down to as little as $1,000
per individual, no one has previously targeted a price point that would
make it possible to sequence everyone's genome. If successful, the $100
genome project could transform the role of genomics in medicine, making
whole genome sequencing feasible for routine use in medical care and
delivering far more diagnostic and predictive information than the genetic
tests available today.

"We tried to approach this project from the perspective of the
clinician, looking at the requirements and opportunities associated with
incorporating genetics into routine clinical diagnostics," said Dr. Radoje
(Rade) Drmanac, chief science officer and co-founder of Complete Genomics.
"Accuracy, speed and low cost were paramount considerations. While there
are a number of powerful and elegant sequencing strategies available or
under development, we determined that we needed a completely novel approach
to overcome their inherent limitations and achieve our $100 cost objective.
We are optimistic that the combination of our two highly innovative
approaches has a good chance of success. "

The joint venture has proposed adapting a novel DNA sequencing
chemistry combined with linearized nanoscale DNA imaging to create a system
that can "read" very long DNA sequences of greater than 100,000 bases at
high speed and with accuracy exceeding the current industry standard. By
condensing a wide range of genetic tests into a single, cost-effective
platform, the proposed technology has the potential to enable improvements
in the diagnosis and personalized treatment of a wide variety of health
conditions, as well as the ability to deliver individually tailored
preventive medicine. The $100 genome would also have important applications
in medical research and drug development.

The NIST-ATP award is in the form of an $8.8 million matching grant for
the five years of the project. The total project cost is expected to be
approximately $17.8 million, including both the grant award from NIST-ATP
and the matching funds that will be provided by the joint venture partners.
Further details of the joint venture between BioNanomatrix and Complete
Genomics were not disclosed.

####

About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging
and analytic platforms for applications in clinical genetics, cancer
diagnostics and other biomedical applications. The company is applying its
expertise in nanochips, nanodevices and nanosystems to develop its patented
platform technology to provide fast, comprehensive, and low-cost analysis
of genomic, epigenomic and proteomic information with sensitivity at the
single cell/single molecule level. BioNanomatrix' technologies are licensed
exclusively from Princeton University. Founded as a spin-out of Princeton
University in 2003, the company is headquartered in Philadelphia,
Pennsylvania. For more information, visit: http://www.BioNanomatrix.com .

About Complete Genomics

Complete Genomics Inc. (CGI) is a high-performance DNA sequencing
company whose mission is to dramatically reduce the cost of DNA sequencing
for research, drug development, and diagnostic applications. Founded in
2005, the company has developed a novel combination of high-density DNA
nanoarrays, sequencing-by-hybridization and combinatorial probe-ligation
chemistry, and high-performance computing techniques that promise to
provide researchers and clinicians with fast, accurate, and inexpensive
complete human genome sequencing. For more information, visit:
http://www.completegenomics.com .

For more information, please click here

Contacts:
Barbara Lindheim
GendeLLindheim BioCom Partners
212 918-4650

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Nanomedicine

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Study reveals new mode of triggering immune responses July 15th, 2022

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Research partnerships

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project