Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome

Project Combines Novel Gene Sequencing Chemistry and Advanced Nanofluidic Technology to Sequence Entire Human Genome in Eight Hours at a Cost of $100

BioNanoatrix and Complete Genomics Receive $8.8 Million NIST-ATP Award to Develop Sequencing Platform for $100 Genome

PHILADELPHIA, PA and MOUNTAIN VIEW, CA | Posted on September 28th, 2007

BioNanomatrix, Inc., a company developing breakthrough nanoscale whole
genome imaging and analytic platforms, and Complete Genomics Inc. (CGI), a
high- performance genome sequencing company, today announced that they have
formed a joint venture that has received an $8.8 million grant award from
the U.S. National Institute of Standards and Technology Advanced Technology
Program (NIST-ATP) to develop a system capable of sequencing the entire
human genome in eight hours at a cost of less than $100.

"We and our colleagues at CGI are thrilled that NIST-ATP sees the
potential of our combined technologies to achieve this ambitious goal,"
said Dr. Michael Boyce-Jacino, president and CEO of BioNanomatrix. "Our
joint venture team will pool our innovative technologies--Complete
Genomics' novel sequencing chemistry and our advanced nanofluidic
platform--to develop a breakthrough technology that will radically decrease
the cost and time required for sequencing the genome, making it possible
for the first time for genetic information to be incorporated into routine
medical care."

Today, the cost of sequencing the roughly three billion base pairs in
the human genome is over $100,000. Despite advances that promise to reduce
this cost significantly in the coming years, down to as little as $1,000
per individual, no one has previously targeted a price point that would
make it possible to sequence everyone's genome. If successful, the $100
genome project could transform the role of genomics in medicine, making
whole genome sequencing feasible for routine use in medical care and
delivering far more diagnostic and predictive information than the genetic
tests available today.

"We tried to approach this project from the perspective of the
clinician, looking at the requirements and opportunities associated with
incorporating genetics into routine clinical diagnostics," said Dr. Radoje
(Rade) Drmanac, chief science officer and co-founder of Complete Genomics.
"Accuracy, speed and low cost were paramount considerations. While there
are a number of powerful and elegant sequencing strategies available or
under development, we determined that we needed a completely novel approach
to overcome their inherent limitations and achieve our $100 cost objective.
We are optimistic that the combination of our two highly innovative
approaches has a good chance of success. "

The joint venture has proposed adapting a novel DNA sequencing
chemistry combined with linearized nanoscale DNA imaging to create a system
that can "read" very long DNA sequences of greater than 100,000 bases at
high speed and with accuracy exceeding the current industry standard. By
condensing a wide range of genetic tests into a single, cost-effective
platform, the proposed technology has the potential to enable improvements
in the diagnosis and personalized treatment of a wide variety of health
conditions, as well as the ability to deliver individually tailored
preventive medicine. The $100 genome would also have important applications
in medical research and drug development.

The NIST-ATP award is in the form of an $8.8 million matching grant for
the five years of the project. The total project cost is expected to be
approximately $17.8 million, including both the grant award from NIST-ATP
and the matching funds that will be provided by the joint venture partners.
Further details of the joint venture between BioNanomatrix and Complete
Genomics were not disclosed.


About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging
and analytic platforms for applications in clinical genetics, cancer
diagnostics and other biomedical applications. The company is applying its
expertise in nanochips, nanodevices and nanosystems to develop its patented
platform technology to provide fast, comprehensive, and low-cost analysis
of genomic, epigenomic and proteomic information with sensitivity at the
single cell/single molecule level. BioNanomatrix' technologies are licensed
exclusively from Princeton University. Founded as a spin-out of Princeton
University in 2003, the company is headquartered in Philadelphia,
Pennsylvania. For more information, visit: .

About Complete Genomics

Complete Genomics Inc. (CGI) is a high-performance DNA sequencing
company whose mission is to dramatically reduce the cost of DNA sequencing
for research, drug development, and diagnostic applications. Founded in
2005, the company has developed a novel combination of high-density DNA
nanoarrays, sequencing-by-hybridization and combinatorial probe-ligation
chemistry, and high-performance computing techniques that promise to
provide researchers and clinicians with fast, accurate, and inexpensive
complete human genome sequencing. For more information, visit: .

For more information, please click here

Barbara Lindheim
GendeLLindheim BioCom Partners
212 918-4650

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017


Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017


Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project