Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum Device Traps, Detects and Manipulates the Spin of Single Electrons

A semiconductor developed by UB engineers provides a novel way to trap, detect and manipulate electron spin.
A semiconductor developed by UB engineers provides a novel way to trap, detect and manipulate electron spin.

Abstract:
A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

Quantum Device Traps, Detects and Manipulates the Spin of Single Electrons

Buffalo, NY | Posted on September 28th, 2007

Published online this week in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.

"The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics," said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits."

While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.

The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.

The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.

In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.

The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.

"It was recently predicted that it should be possible to use these constrictions to trap single spins," said Bird. "In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically."

The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.

These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.

By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.

"As we increase the charge on the gates, this begins to close that gap," explained Bird, "allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin."

The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.

"One region of the device is sensitive to what happens in the other region," he said.

Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.

Co-authors on the paper are Youngsoo Yoon, Ph.D., a UB doctoral student in electrical engineering; L. Mourokh of Queens College and the College of Staten Island of the City University of New York; T. Morimoto, N. Aoki and Y. Ochiai of Chiba University in Japan; and J. L. Reno of Sandia National Laboratories.

The research was funded by the U.S. Department of Energy. Bird, who also has received funding from the UB Office of the Vice President for Research, was recruited to UB with a faculty recruitment grant from the New York State Office of Science, Technology and Academic Outreach (NYSTAR).

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum



716-645-5000 ext 1415

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project