Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > PET Scanning Tracks Injected Quantum Dots

Abstract:
A wide variety of experiments have shown that nanoscale quantum dots have the potential to detect early-stage cancer and even monitor the progress of anticancer therapies. But a new study from a team of investigators at the Center for Cancer Nanotechnology Excellence Focused (CCNE) on Therapy Response suggests that quantum dots as they currently exist may not remain in the body long enough to prove useful in human clinical applications.

PET Scanning Tracks Injected Quantum Dots

Bethesda, MD | Posted on September 27th, 2007

Sanjiv Gambhir, M.D., Ph.D., principal investigator of the Stanford University-based CCNE, along with fellow CCNE investigators Anna Wu, Ph.D., and Xiaoyuan Chen, Ph.D., used positron emission tomography (PET) to track the fate of radioactively labeled quantum dots labeled after injection into mice. After injection, PET imaging revealed that as much as a half of the quantum dots were removed from the blood stream by the liver and spleen and that the entire dose was removed from circulation within 10 minutes of injection. Quantum dots coated with poly(ethylene glycol) (PEG), a biocompatible polymer used to extend the circulating lifetime of many types of nanoparticles, fared little better. The size of the quantum dots also had little effect on blood clearance rates.

The researchers note that while this study raises important biodistribution issues that must be solved if quantum dots are to become a useful clinical tool, it also demonstrates that PET monitoring of radiolabelled nanoparticles can provide rapid, quantitative data on nanoparticle biodistribution. In addition, the real-time nature of PET monitoring allowed the investigators to identify differences in pharmacokinetic properties between PEG-coated and native quantum dots. These differences would not have been spotted using traditional pharmacokinetic assays.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper, "MicroPET-based biodistribution of quantum dots in living mice." Investigators from the University of California, Los Angeles, School of Medicine also participated in this study. An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Discoveries

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Announcements

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Quantum Dots/Rods

'Quantum dot' technology may help light the future August 19th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic