Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > PET Scanning Tracks Injected Quantum Dots

Abstract:
A wide variety of experiments have shown that nanoscale quantum dots have the potential to detect early-stage cancer and even monitor the progress of anticancer therapies. But a new study from a team of investigators at the Center for Cancer Nanotechnology Excellence Focused (CCNE) on Therapy Response suggests that quantum dots as they currently exist may not remain in the body long enough to prove useful in human clinical applications.

PET Scanning Tracks Injected Quantum Dots

Bethesda, MD | Posted on September 27th, 2007

Sanjiv Gambhir, M.D., Ph.D., principal investigator of the Stanford University-based CCNE, along with fellow CCNE investigators Anna Wu, Ph.D., and Xiaoyuan Chen, Ph.D., used positron emission tomography (PET) to track the fate of radioactively labeled quantum dots labeled after injection into mice. After injection, PET imaging revealed that as much as a half of the quantum dots were removed from the blood stream by the liver and spleen and that the entire dose was removed from circulation within 10 minutes of injection. Quantum dots coated with poly(ethylene glycol) (PEG), a biocompatible polymer used to extend the circulating lifetime of many types of nanoparticles, fared little better. The size of the quantum dots also had little effect on blood clearance rates.

The researchers note that while this study raises important biodistribution issues that must be solved if quantum dots are to become a useful clinical tool, it also demonstrates that PET monitoring of radiolabelled nanoparticles can provide rapid, quantitative data on nanoparticle biodistribution. In addition, the real-time nature of PET monitoring allowed the investigators to identify differences in pharmacokinetic properties between PEG-coated and native quantum dots. These differences would not have been spotted using traditional pharmacokinetic assays.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper, "MicroPET-based biodistribution of quantum dots in living mice." Investigators from the University of California, Los Angeles, School of Medicine also participated in this study. An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Discoveries

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Announcements

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Quantum Dots/Rods

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Engineered hybrid crystal opens new frontiers for high-efficiency lighting: University of Toronto researchers successfully combine 2 different materials to create new hyper-efficient light-emitting crystal July 16th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project