Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles Yield Safer Light-Activated Cancer Therapy

Abstract:
Photodynamic therapy, in which light activates a chemical known as a photosensitizer, triggering the production of cell-killing reactive oxygen, has proven itself as an effective therapy for a limited number of cancers. Oncologists have long suspected that photodynamic therapy could find broader use if only there was some way to limit the accumulation of photosensitizer molecules to tumors, sparing healthy tissue from unintended damage. Now, using modified silica nanoparticles, a team of investigators at the State University of New York, Buffalo, has developed a photosensitizer delivery method that has the potential to target tumor cells specifically.

Nanoparticles Yield Safer Light-Activated Cancer Therapy

Bethesda, MD | Posted on September 27th, 2007

Paras Prasad, Ph.D., principal investigator of one of the National Cancer Institute's Cancer Nanotechnology Platform Partnerships, heads the research effort that is aiming to use nanotechnology to make photodynamic therapy safer and more effective. His group has approached this problem by using porous silica nanoparticles modified in such a way as to form a strong chemical bond between the nanoparticles and the photosensitizer molecules. When exposed to light, the permanently entrapped photosensitizer still produces reactive oxygen molecules that can diffuse out of the nanoparticles through their porous silica shells.

The investigators found, too, that human colon cancer cells readily take up the photosensitizer-loaded nanoparticles. More importantly, shining light on these cells resulted in their death. In contrast, cells that were not exposed first to these nanoparticles suffered no ill effects from exposure to light. The investigators, who published their results in the journal Nano Letters, note that they are now developing a second-generation nanoparticle-photosensitizer construct that also includes tumor-targeting and imaging molecules.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer." Investigators from the Roswell Park Cancer Institute also participated in this study. This paper was published online in advance of print publication. An abstract is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE