Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanowire generates power by harvesting energy from the environment

Top: Schematic showing the experimental setup for the piezoelectric charge detection from an individual barium-titanate nanowire. Bottom: Scanning electron microscope image of the suspended nanowire under test.
Top: Schematic showing the experimental setup for the piezoelectric charge detection from an individual barium-titanate nanowire. Bottom: Scanning electron microscope image of the suspended nanowire under test.

Abstract:
As the sizes of sensor networks and mobile devices shrink toward the microscale, and even nanoscale, there is a growing need for suitable power sources. Because even the tiniest battery is too big to be used in nanoscale devices, scientists are exploring nanosize systems that can salvage energy from the environment.

Nanowire generates power by harvesting energy from the environment

Urbana-Champaign, IL | Posted on September 27th, 2007

Now, researchers at the University of Illinois have shown that a single nanowire can produce power by harvesting mechanical energy. Made of piezoelectric material, the nanowire generates a voltage when mechanically deformed. To measure the voltage produced by such a tiny wire, however, the researchers first had to build an extremely sensitive and precise mechanical testing stage.

"With the development of this precision testing apparatus, we successfully demonstrated the first controlled measurement of voltage generation from an individual nanowire," said Min-Feng Yu, a professor of mechanical science and engineering, and a researcher at the university's Beckman Institute. "The new testing apparatus makes possible other difficult, but important, measurements, as well."

Yu and graduate students Zhaoyu Wang, Jie Hu, Abhijit Suryavanshi and Kyungsuk Yum describe the measurement, and the measurement device, in a paper accepted for publication in the journal Nano Letters, and posted on the journal's Web site.

The nanowire was synthesized in the form of a single crystal of barium titanate, an oxide of barium and titanium used as a piezoelectric material in microphones and transducers, and was approximately 280 nanometers in diameter and 15 microns long.

The precision tensile mechanical testing stage is a finger-size device consisting of two coplanar platforms - one movable and one stationary - separated by a 3-micron gap. The movable platform is driven by a single-axis piezoelectric flexure stage with a displacement resolution better than 1 nanometer.

When the researchers' piezoelectric nanowire was placed across the gap and fastened to the two platforms, the movable platform induced mechanical vibrations in the nanowire. The voltage generated by the nanowire was recorded by high-sensitivity, charge-sensing electronics.

"The electrical energy produced by the nanowire for each vibrational cycle was 0.3 attojoules (less than one quintillionth of a joule)," Yu said. "Accurate measurements this small could not be made on nanowires before."

While the researchers created mechanical deformations in the nanowire through vibrations caused by external motion, other vibrations in the environment, such as sound waves, should also induce deformations. The researchers' next step is to accurately measure the piezoelectric nanowire's response to those acoustic vibrations.

"In addition, because of the fine precision offered by the mechanical testing stage, it should also be possible to quantitatively compare the intrinsic properties of the nanowire to those of the bulk material," Yu said. "This will allow us to study the scale effect related to electromechanical coupling in nanoscale systems."

Funding was provided by the National Science Foundation. Part of the work was carried out in the University's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.

Editor's note: To reach Min-Feng Yu, call 217-333-9246; e-mail: .

####

About University of Illinois at Urbana-Champaign
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073;

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE