Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanowire generates power by harvesting energy from the environment

Top: Schematic showing the experimental setup for the piezoelectric charge detection from an individual barium-titanate nanowire. Bottom: Scanning electron microscope image of the suspended nanowire under test.
Top: Schematic showing the experimental setup for the piezoelectric charge detection from an individual barium-titanate nanowire. Bottom: Scanning electron microscope image of the suspended nanowire under test.

Abstract:
As the sizes of sensor networks and mobile devices shrink toward the microscale, and even nanoscale, there is a growing need for suitable power sources. Because even the tiniest battery is too big to be used in nanoscale devices, scientists are exploring nanosize systems that can salvage energy from the environment.

Nanowire generates power by harvesting energy from the environment

Urbana-Champaign, IL | Posted on September 27th, 2007

Now, researchers at the University of Illinois have shown that a single nanowire can produce power by harvesting mechanical energy. Made of piezoelectric material, the nanowire generates a voltage when mechanically deformed. To measure the voltage produced by such a tiny wire, however, the researchers first had to build an extremely sensitive and precise mechanical testing stage.

"With the development of this precision testing apparatus, we successfully demonstrated the first controlled measurement of voltage generation from an individual nanowire," said Min-Feng Yu, a professor of mechanical science and engineering, and a researcher at the university's Beckman Institute. "The new testing apparatus makes possible other difficult, but important, measurements, as well."

Yu and graduate students Zhaoyu Wang, Jie Hu, Abhijit Suryavanshi and Kyungsuk Yum describe the measurement, and the measurement device, in a paper accepted for publication in the journal Nano Letters, and posted on the journal's Web site.

The nanowire was synthesized in the form of a single crystal of barium titanate, an oxide of barium and titanium used as a piezoelectric material in microphones and transducers, and was approximately 280 nanometers in diameter and 15 microns long.

The precision tensile mechanical testing stage is a finger-size device consisting of two coplanar platforms - one movable and one stationary - separated by a 3-micron gap. The movable platform is driven by a single-axis piezoelectric flexure stage with a displacement resolution better than 1 nanometer.

When the researchers' piezoelectric nanowire was placed across the gap and fastened to the two platforms, the movable platform induced mechanical vibrations in the nanowire. The voltage generated by the nanowire was recorded by high-sensitivity, charge-sensing electronics.

"The electrical energy produced by the nanowire for each vibrational cycle was 0.3 attojoules (less than one quintillionth of a joule)," Yu said. "Accurate measurements this small could not be made on nanowires before."

While the researchers created mechanical deformations in the nanowire through vibrations caused by external motion, other vibrations in the environment, such as sound waves, should also induce deformations. The researchers' next step is to accurately measure the piezoelectric nanowire's response to those acoustic vibrations.

"In addition, because of the fine precision offered by the mechanical testing stage, it should also be possible to quantitatively compare the intrinsic properties of the nanowire to those of the bulk material," Yu said. "This will allow us to study the scale effect related to electromechanical coupling in nanoscale systems."

Funding was provided by the National Science Foundation. Part of the work was carried out in the University's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.

Editor's note: To reach Min-Feng Yu, call 217-333-9246; e-mail: .

####

About University of Illinois at Urbana-Champaign
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073;

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project