Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Using Catalysts to Stamp Nanopatterns Without Ink

Abstract:
Using enzymes from E. coli bacteria, Duke University chemists and engineers have introduced a hundred-fold improvement in the precision of features imprinted to create microdevices such as labs-on-a-chip.

Using Catalysts to Stamp Nanopatterns Without Ink

Durham, NC | Posted on September 26th, 2007

Their inkless microcontact printing technique can imprint details measuring close to 1 nanometer, or billionths of a meter, the Duke team reported in the Sept. 24, 2007 issue of the Journal of Organic Chemistry.

"This has a lot of potential, because we don't have the resolution issue," said Robert Clark, a professor of mechanical engineering and materials science and dean at Duke's Pratt School of Engineering. "The really important part is that with a biological catalyst there's no ink involved," added Duke chemistry professor Eric Toone.

Clark, Toone and three graduate students authored the report on their study, which was funded by the National Science Foundation (NSF).

In traditional microcontact printing -- also called soft lithography or microstamping -- an elastic stamp's end is cast from a mold created via photolithograpy - a technique used to generate microscopic patterns with light. Those patterns are then transferred to a surface by employing various biomolecules as inks, rather like a rubber stamp.

Microcontact printing was first reported by Ralph Nuzzo and Dave Allara at Pennsylvania State University, and developed extensively in the laboratory of George Whitesides at Harvard.

A shortcoming of traditional microcontact printing is that pattern transfer relies on the diffusion of ink from the stamp to the surface. This same diffusion spreads out beyond the limits of the pattern as the stamp touches the surface, degrading resolution and blurring the feature edges, Clark and Toone said.

Because of this mini-blurring, the practical limit to defect-free patterning is "in excess of 100 nanometers," said the report, whose first author, Phillip Snyder, is a former Toone graduate student now working as a postdoctoral researcher in Whitesides' group.

A 100 nanometer limit of resolution is about 1,000 times tinier than a human hair's width. While that seems very precise, the Duke team now reports it can boost accuracy limits to less than 2 nanometers by entirely eliminating inking.

Clark and graduate student Matthew Johannes crafted a microstamp out of a gel-like material called polyacrylamide, which compresses more uniformly than the silicone material known as PDMS which is normally used in microstamping.

In lieu of ink, Snyder, Toone and graduate student Briana Vogen suspended a biological catalyst on the stamp with a molecular "tether" of amino acids. For this proof-of-principle demonstration, Toone's team chose as a catalyst the biological enzyme exonuclease I, derived from the bacterium E. coli.

In one set of experiments, the polyacrylamide stamp pattern bearing the tethered enzymes was then pressed on a surface of gold that had been covered with a uniform coating of single-stranded DNA molecules. The DNA molecules had also been linked to fluorescent dye molecules to make the coating visible under a microscope.

Wherever the enzyme met the DNA, the end of the DNA chain and its attached dye were broken off and removed. That created a dye-less pattern of dots on the DNA coating, each dot measuring about 10 millionths of a meter diameter each.

The microdots are very precise because the catalyst that created them could not shift its position more than the length of its chemical tether -- less than 1 nanometer, the Duke team reported. "Whether the stamp was left on for a short period of time, or for days, the pattern did not change," Clark said.

The inkless microstamp could also re-use the same suspended catalyst molecule repeatedly. "Enzymes can deteriorate with extended use," Clark acknowledged. "But because of our tether attachment chemistry, we can easily wash the old enzyme off, put on a new one and keep going," Clark said.

In follow-up research, Clark and Toone are now evaluating more durable microstamping materials attached to longer lasting catalysts that are non-enzymatic.

By using different catalysts in succession, future versions of the inkless technique could be used to build complex nanoscale devices with unprecedented precision, the two predicted.

"Soft lithography has really revolutionized the field of surface science over the last 30 years," said Toone. "And I honestly believe that using catalysts instead of diffusive processes is going to become the way that soft lithography is done in the future."

The collaboration of chemists and engineers was itself catalyzed by the Pratt School's Center for Biologically Inspired Materials and Materials Systems (CBIMMS), Clark added. Funding through CBIMMS from the NSF's Integrative Graduate Education and Research Traineeships program is supporting student work on such projects, he said.
_ _ _ _

Note to broadcast editors: Duke provides an on-campus satellite uplink facility for live or pre-recorded television interviews. We are also equipped with ISDN connectivity for radio interviews. Broadcast reporters should contact the Office of Radio-TV Services at (919) 681-8067 to arrange an interview.

####

For more information, please click here

Contacts:
Monte Basgall
(919) 681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Discoveries

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Announcements

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanobiotechnology

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Printing/Lithography/Inkjet/Inks

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE