Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists get first look at nanotubes inside living animals

Abstract:
Camera captures fluorescent glow from tiny carbon tubes in fruit flies

Rice University scientists have captured the first optical images of carbon nanotubes inside a living organism. The research appears in the September issue of Nano Letters. The researchers fed carbon nanotubes to newly hatched fruit flies. Using a laser, they excited a fluorescent glow from the nanotubes and took pictures of the near-infrared glow with a custom microscope. The researchers hope the technique will be useful in finding new ways to diagnose disease.

Scientists get first look at nanotubes inside living animals

Houston, TX | Posted on September 24th, 2007

Rice University scientists have captured the first optical images of carbon nanotubes inside a living organism. Using fruit flies, the researchers confirmed that a technique developed at Rice -- near-infrared fluorescent imaging -- was capable of detecting DNA-sized nanotubes inside living fruit flies.

"Carbon nanotubes are much smaller than living cells, and they give off fluorescent light in a way that researchers hope to harness to detect diseases earlier than currently possible," said research co-author Bruce Weisman, professor of chemistry. "In order to do that, we need to learn how to detect and monitor nanotubes inside living tissues, and we must also determine whether they pose any hazards to organisms."

Researchers have studied how carbon nanotubes interact with tissues of rabbits, mice and other animals, but Weisman and co-author Kathleen Beckingham, professor of biochemistry and cell biology, chose something smaller -- the fruit fly Drosophila melanogaster -- to attempt the first-ever detection of nanotubes inside a living animal.

" Drosophila is one of biology's preeminent model organisms," said Beckingham. "We have a wealth of knowledge about the genetic and biochemical workings of fruit flies, and this presents us with unique opportunities to explore the effects and fate of single-walled carbon nanotubes in a living organism."

Weisman and Beckingham's research, which is available online, appeared in the September issue of Nano Letters, the American Chemical Society's journal..

In the study, fruit fly larvae were raised on a yeast paste that contained carbon nanotubes. The flies were fed this food from the time they hatched throughout their initial feeding phase of 4-5 days. Fruit flies are ravenous eaters during this period and gain weight continuously until they are about 200 times heavier than hatchlings. Then they become pupae. As pupae, they do not eat or grow. They mature inside pupal cases and emerge as adult flies.

"Developmentally, the first few days of a fruit fly's life are critical," Beckingham said. "We provided larval flies with a steady diet of food that contained carbon nanotubes and checked their weight just after they emerged from their pupal cases. We found no significant differences in the adult weight of nanotube-fed flies when compared to control groups that were not fed carbon nanotubes."

The nanotube-fed larvae also survived to adulthood just as well as the control group.

Using a custom-built microscope, the team aimed a red laser beam into the fruit flies. This excited a fluorescent glow from the carbon nanotubes, as they emitted near-infrared light of specific wavelengths. The researchers were able to use a special camera to view the glowing nanotubes inside living flies. Videos constructed from these images clearly showed peristaltic movements in the digestive system.

When the researchers removed and examined tissues from the flies, they found the near-infrared microscope allowed them to see and identify individual nanotubes inside the tissue specimens. The highest concentration of nanotubes was found in the dorsal vessel, which is analogous to a main blood vessel in a mammal. Lesser concentrations were found in the brain, ventral nerve cord, salivary glands, trachea and fat. Based on their assays, the team estimates that only about one in 100 million nanotubes passed through the gut wall and became incorporated into the flies' organs.

The research was sponsored by the National Science Foundation, Rice University's Center for Biological and Environmental Nanotechnology, the Alliance for NanoHealth and the Welch Foundation. Co-authors include Tonya Leeuw, Michelle Reith, Rebecca Simonette, Mallory Harden, Paul Cherukuri and Dmitri Tsyboulski.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE