Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technology to reduce large-scale emissions

Dr Zhu
Dr Zhu

Abstract:
A novel technology to trap large-scale greenhouse gas emissions caused by coal mining and power generation is being developed by a University of Queensland researcher.

New technology to reduce large-scale emissions

Brisbane, Australia | Posted on September 17th, 2007

Dr John Zhu, Senior Lecturer in the School of Engineering, aims to develop a carbon nanotube (CNT) membrane for gas separation that will work like a sieve to separate high volumes of methane or carbon dioxide from other gases.

Dr Zhu said that the CNT technology was exciting because it would trap moving gases up to 100 times faster than other gas separation techniques and could therefore be used by large-scale plants such as power stations.

"Conventional membranes such as polymeric and metal membranes, porous silica and carbon molecular sieves all show a trade-off between how well they separate gases and how much gas they can process," he said.

"The CNT membranes can both separate effectively and process large volumes of gas, making them superior to conventional membranes at the large scale required for coal-fired power plants or natural gas processing.

"If the technology is successful, it may be able to significantly reduce the amount of greenhouse gases produced through power generation. This is especially important in Queensland where we are dependent on power generated from coal."

The carbon nanotube technology works by "sieving" gas as it passes through the membrane, and can be applied to various aspects of the power-generation process including during the mining process and after the fuel is burnt.

During underground coal mining, methane (an explosive gas which is present in the coal) must be removed before the coal can be extracted. In current practice, the methane is so diluted with air that it cannot be used and is therefore released into the atmosphere. The CNT membrane will enable the methane to be separated and harnessed for use as valuable pipeline quality gas.

In power stations, after coal or gas is burnt, a CNT membrane may be used to separate carbon dioxide from waste gas. The carbon dioxide can then be permanently and safely disposed of through methods such as sequestration.

If successful, the CNT membrane is likely to be commercialised and available for use in the next 10 to 15 years.

Dr Zhu said he was both pleased and grateful that his research was being recognised by the University with the award, and for the opportunity to advance research in an area so critical to the future health of the planet.

"I have been concerned about humankind's impact on the environment for many years. It is imperative that we reduce greenhouse emissions. I hope the CNT membrane will help to achieve that," Dr Zhu said.

####

About University of Queensland
The University of Queensland (UQ) is one of Australia's premier learning and research institutions. It is the oldest university in Queensland and has produced generations of graduates who have gone on to become leaders in all areas of society and industry. The University is a founding member of the national Group of Eight, an alliance of research-strong "sandstone" universities committed to ensuring that Australia has higher education institutions which are genuinely world class. It belongs also to the global Universitas 21 alliance. This group aims to enhance the quality of university outcomes through international benchmarking and a joint venture e-learning project with The Thomson Corporation.

For more information, please click here

Contacts:
Media:
Dr Zhu
07 3365 3528

or
Kim Jensen
UQ Engineering
07 3346 9976

Copyright © University of Queensland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Masterís Program February 13th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Environment

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE