Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New technology to reduce large-scale emissions

Dr Zhu
Dr Zhu

Abstract:
A novel technology to trap large-scale greenhouse gas emissions caused by coal mining and power generation is being developed by a University of Queensland researcher.

New technology to reduce large-scale emissions

Brisbane, Australia | Posted on September 17th, 2007

Dr John Zhu, Senior Lecturer in the School of Engineering, aims to develop a carbon nanotube (CNT) membrane for gas separation that will work like a sieve to separate high volumes of methane or carbon dioxide from other gases.

Dr Zhu said that the CNT technology was exciting because it would trap moving gases up to 100 times faster than other gas separation techniques and could therefore be used by large-scale plants such as power stations.

"Conventional membranes such as polymeric and metal membranes, porous silica and carbon molecular sieves all show a trade-off between how well they separate gases and how much gas they can process," he said.

"The CNT membranes can both separate effectively and process large volumes of gas, making them superior to conventional membranes at the large scale required for coal-fired power plants or natural gas processing.

"If the technology is successful, it may be able to significantly reduce the amount of greenhouse gases produced through power generation. This is especially important in Queensland where we are dependent on power generated from coal."

The carbon nanotube technology works by "sieving" gas as it passes through the membrane, and can be applied to various aspects of the power-generation process including during the mining process and after the fuel is burnt.

During underground coal mining, methane (an explosive gas which is present in the coal) must be removed before the coal can be extracted. In current practice, the methane is so diluted with air that it cannot be used and is therefore released into the atmosphere. The CNT membrane will enable the methane to be separated and harnessed for use as valuable pipeline quality gas.

In power stations, after coal or gas is burnt, a CNT membrane may be used to separate carbon dioxide from waste gas. The carbon dioxide can then be permanently and safely disposed of through methods such as sequestration.

If successful, the CNT membrane is likely to be commercialised and available for use in the next 10 to 15 years.

Dr Zhu said he was both pleased and grateful that his research was being recognised by the University with the award, and for the opportunity to advance research in an area so critical to the future health of the planet.

"I have been concerned about humankind's impact on the environment for many years. It is imperative that we reduce greenhouse emissions. I hope the CNT membrane will help to achieve that," Dr Zhu said.

####

About University of Queensland
The University of Queensland (UQ) is one of Australia's premier learning and research institutions. It is the oldest university in Queensland and has produced generations of graduates who have gone on to become leaders in all areas of society and industry. The University is a founding member of the national Group of Eight, an alliance of research-strong "sandstone" universities committed to ensuring that Australia has higher education institutions which are genuinely world class. It belongs also to the global Universitas 21 alliance. This group aims to enhance the quality of university outcomes through international benchmarking and a joint venture e-learning project with The Thomson Corporation.

For more information, please click here

Contacts:
Media:
Dr Zhu
07 3365 3528

or
Kim Jensen
UQ Engineering
07 3346 9976

Copyright © University of Queensland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Discoveries

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic