Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UT-ORNL governor's chair unlocks secrets of protein folding

Abstract:
A team led by biophysicist Jeremy Smith of the University of Tennessee and Oak Ridge National Laboratory (ORNL) has taken a significant step toward unraveling the mystery of how proteins fold into unique, three-dimensional shapes.

UT-ORNL governor's chair unlocks secrets of protein folding

KNOXVILLE, TN | Posted on September 17th, 2007

Using ORNL's Cray XT4 Jaguar supercomputer as well as computer systems in Italy and Germany, the team revealed a driving force behind protein folding involving the way its constituents interact with water. The team's results are being published in this week's edition of the Proceedings of the National Academy of Sciences.

Proteins are the workhorses of the body, taking on a wide variety of tasks. They fight infections, turn food into energy, copy DNA and catalyze chemical reactions. Insulin is a protein, as are antibodies and many hormones.

Scientists are still very interested in deciphering how proteins work.

A protein is a string of amino acids, and what it does is determined by the shape it takes. That shape is determined by the sequence of the amino acids. Like a piece of biological origami, the protein folds itself into the form necessary to carry out its job. Without the shape the protein would be worthless.

"Understanding the mechanism by which proteins fold up into unique three-dimensional architectures is a holy grail in molecular biology," explained Smith, who holds the first UT-ORNL Governor's Chair and is a member of the Biochemistry and Molecular Biology Department at UT.

"Unfortunately, if you give me the sequence of amino acid building blocks in the protein, I cannot tell you what the structure would be," he said. "If I had been able to do that with a computer a while ago, the work behind about a dozen Nobel prizes -- those awarded for experimental work on protein structure determination -- would not have been necessary."

Working on a smaller chain of amino acids known as a peptide, the group showed that the folding is determined largely by how parts of the peptide interact with water. Areas that shun water are said to be hydrophobic, and the team's results show that the way water wets these hydrophobic areas determines the ultimate shape and behavior of the peptide.

In particular, the team determined that small hydrophobic areas of the peptide, up to the size of a water molecule, induce different behavior in water than larger hydrophobic areas, and that this difference is crucial for the folding. This insight builds on the work of another team, based at the University of California-Berkeley.

"David Chandler and his colleagues at Berkeley have a theory stating that hydrophobicity is qualitatively different on different length scales," Smith said. "If you have small hydrophobic molecules or groups that are themselves roughly the size of a water molecule, the water doesn't seem to be too bothered by these groups. But when you get hydrophobic entities as long as several water molecules, the water molecules have a problem with that. They can't cloak themselves around the hydrophobic surface anymore, and there is a dewetting or drying effect as they are repelled from the surface.

"Our simulations have shown that Chandler's theory works for peptides, and, moreover, that the drying effect determines which structure our peptide adopts. It's kind of 'dry it off then fold it up.'"

Smith said his team's achievement was made possible by high-performance computing, noting that Jaguar is currently rated the second most powerful computing system in the world. Smith also said that his team will need increasingly powerful supercomputers for additional simulation. While the team so far has been able to simulate about a microsecond in the life of a peptide, they must eventually be able to increase that time a thousand-fold, to milliseconds, and simulate proteins that are 10 to 100 times as large as the peptides.

"The runs were a couple of microseconds, which was adequate for the peptide that was simulated," Smith explained. "But the team is looking forward to increased computing capacity as it moves forward. The technique used is molecular dynamics simulation, and it needs high-performance leadership supercomputing to reach the length and timescales needed to fold a complete functional protein in the computer. With the projected capability improvements in Jaguar over the next couple of years, we will soon be approaching that goal."

Smith made it clear that the achievement would represent a watershed in the field.

"When we do eventually find out how to calculate protein structure from sequence," he said, "then a major revolution will come upon us, as we will have the basis to move forward with understanding much of biology and medicine, and the applications will range from rationally designing drugs to fit clefts in protein structures to engineering protein shapes for useful functions in nanotechnology and bioenergy."

####

About University of Tennessee at Knoxville
UT Knoxville is among the nation's top public universities, and its programs in Business, Law, Engineering, and Education, Health, and Human Science all rank among the nation's very best.

For more information, please click here

Contacts:
Jay Mayfield

865-974-9409

Mike Bradley
ORNL
865-576-9553

Copyright © University of Tennessee at Knoxville

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Energy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Nanobiotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE