Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Taxol® bristle ball: a wrench in the works for cancer

Abstract:
Rice University chemists have discovered a way to load dozens of molecules of the anti-cancer drug Taxol® onto tiny gold spheres. The result is a ball many times smaller than a living cell that literally bristles with the drug. Researchers hope to use the Taxol bristle ball to deliver large quantities of Taxol directly to cancer cells. The research will appear in the Sept. 19 issue of the Journal of the American Chemical Society.

Taxol® bristle ball: a wrench in the works for cancer

Houston, TX | Posted on September 12th, 2007

Rice University chemists have discovered a way to load dozens of molecules of the anti-cancer drug paclitaxel onto tiny gold spheres. The result is a tiny ball, many times smaller than a living cell that literally bristles with the drug.

Paclitaxel, which is sold under the brand name Taxol®, prevents cancer cells from dividing by jamming their inner works.

"Paclitaxel is one of the most effective anti-cancer drugs, and many researchers are exploring how to deliver much more of the drug directly to cancer cells," said lead researcher Eugene Zubarev, the Norman Hackerman-Welch Young Investigator and assistant professor of chemistry at Rice. "We looked for an approach that would clear the major hurdles people have encountered -- solubility, drug efficacy, bioavailability and uniform dispersion -- and our initial results look very promising."

The research is available online and will appear in the Sept. 19 issue of the Journal of the American Chemical Society (J. Am. Chem. Soc. 2007, vol. 129, pgs.11653-11661).

First isolated from the bark of the yew tree in 1967, paclitaxel is one of the most widely prescribed chemotherapy drugs in use today. The drug is used to treat breast, ovarian and other cancers.

Paclitaxel works by attaching itself to structural supports called microtubules, which form the framework inside living cells. In order to divide, cells must break down their internal framework, and paclitaxel stops this process by locking the support into place.

Since cancer cells divide more rapidly than healthy cells, paclitaxel is very effective at slowing the growth of tumors in some patients. However, one problem with using paclitaxel as a general inhibitor of cell division is that it works on all cells, including healthy cells that tend to divide rapidly. This is why patients undergoing chemotherapy sometimes suffer side effects like hair loss and suppressed immune function.

"Ideally, we'd like to deliver more of the drug directly to the cancer cells and reduce the side effects of chemotherapy," Zubarev said. "In addition, we'd like to improve the effectiveness of the drug, perhaps by increasing its ability to stay bound to microtubules within the cell."

Zubarev's new delivery system centers on a tiny ball of gold that's barely wider than a strand of DNA. Finding a chemical process to attach a uniform number of paclitaxel molecules to the ball -- without chemically altering the drugs -- was not easy. Only a specific region of the drug binds with microtubules. This region of the drugs fits neatly into the cell's support structure, like a chemical "key" fitting into a lock. Zubarev and graduate student Jacob Gibson knew they had to find a way to make sure the drug's key was located on the face of each bristle.

Zubarev and Gibson first designed a chemical "wrapper" to shroud the key, protecting it from the chemical reactions they needed to perform to create the ball. Using the wrapped version of the drug, they undertook a series of reactions to attach the drug to linker molecules that were, in turn, attached to the ball. In the final step of the reaction, they dissolved the wrapper, restoring the key.

"We are already working on follow-up studies to determine the potency of the paclitaxel-loaded nanoparticles," Zubarev said. "Since each ball is loaded with a uniform number of drug molecules, we expect it will be relatively easy to compare the effectiveness of the nanoparticles with the effectiveness of generally administered paclitaxel."

Research co-authors include Rice graduate student Bishnu Khanal. The research was funded by the National Science Foundation and the Welch Foundation.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
PHONE: 713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE