Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT works toward safer gene therapy

Structure of a piece of a biodegradable polymer used for gene delivery. Image / Jordan Green - MIT
Structure of a piece of a biodegradable polymer used for gene delivery. Image / Jordan Green - MIT

Abstract:
In work that could lead to safe and effective techniques for gene therapy, MIT researchers have found a way to fine-tune the ability of biodegradable polymers to deliver genes.

MIT works toward safer gene therapy

CAMBRIDGE, MA | Posted on September 7th, 2007

Gene therapy, which involves inserting new genes into patients' cells to fight diseases like cancer, holds great promise but has yet to realize its full potential, in part because of safety concerns over the conventional technique of using viruses to carry the genes.

The new MIT work, published this week in Advanced Materials, focuses on creating gene carriers from synthetic, non-viral materials. The team is led by Daniel Anderson, research associate in MIT's Center for Cancer Research.

"What we wanted to do is start with something that's very safe-a biocompatible, degradable polymer-and try to make it more effective, instead of starting with a virus and trying to make it safer," said Jordan Green, a graduate student in biological engineering and co-first author of the paper.

Gregory Zugates, a former graduate student in chemical engineering now at WMR Biomedical, Inc., is also a co-first author of the paper.

Gene therapy has been a field of intense research for nearly 20 years. More than 1,000 gene-therapy clinical trials have been conducted, but to date there are no FDA-approved gene therapies. Most trials use viruses as carriers, or vectors, to deliver genes.

However, there are risks associated with using viruses. As a result, many researchers have been working on developing non-viral methods to deliver therapeutic genes.

The MIT scientists focused on three poly(beta-amino esters), or chains of alternating amine and diacrylate groups, which had shown potential as gene carriers. They hoped to make the polymers even more efficient by modifying the very ends of the chains.

When mixed together, these polymers can spontaneously assemble with DNA to form nanoparticles. The polymer-DNA nanoparticle can act in some ways like an artificial virus and deliver functional DNA when injected into or near the targeted tissue.

The researchers developed methods to rapidly optimize and test new polymers for their ability to form DNA nanoparticles and deliver DNA. They then chemically modified the very ends of the degradable polymer chains, using a library of different small molecules.

"Just by changing a couple of atoms at the end of a long polymer, one can dramatically change its performance," said Anderson. "These minor alterations in polymer composition significantly increase the polymers' ability to deliver DNA, and these new materials are now the best non-viral DNA delivery systems we've tested."

The polymers have already been shown to be safe in mice, and the researchers hope to ultimately run clinical trials with their modified polymers, said Anderson.

Non-viral vectors could prove not only safer than viruses but also more effective in some cases. The polymers can carry a larger DNA payload than viruses, and they may avoid the immune system, which could allow multiple therapeutic applications if needed, said Green.

One promising line of research involves ovarian cancer, where the MIT researchers, in conjunction with Janet Sawicki at the Lankenau Institute for Medical Research, have demonstrated that these polymer-DNA nanoparticles can deliver DNA at high levels to ovarian tumors without harming healthy tissue.

Other MIT authors on the paper are Nathan Tedford, a former graduate student in biological engineering now at Epitome Biosystems; Linda Griffith, professor of biological engineering; Douglas Lauffenberger, head of biological engineering, and Institute Professor Robert Langer. Sawicki and Yu-Hung Huang of the Lankenau Institute are also co-authors.

The research was funded by the National Institutes of Health, the Department of Defense and the National Science Foundation.

####

About Massachusetts Institute of Technology
The MIT Center for Cancer Research (CCR) was founded in 1974 and is one of eight National Cancer Institute-designated basic research centers. Its mission is to apply the tools of basic science and technology to determine how cancer is caused, progresses and responds to treatment.

For more information, please click here

Contacts:
Elizabeth Thomson

617-258-5402

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project