Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM and Imago Find a Crucial Difficulty in Semiconductor Device Scaling

Abstract:
In 1959, Nobel Prize winner Richard Feynman presented a talk entitled "There's Plenty of Room at the Bottom." Feynman concluded that there was no physical reason why humans couldn't manipulate atoms. However, if atomic manipulation is achieved the question of observing the new atom positions remains. " How do you know what you have done?"

IBM and Imago Find a Crucial Difficulty in Semiconductor Device Scaling

Madison, WI | Posted on September 6th, 2007

As reported in the Sept. 7, 2007 issue of Science, IBM and Imago have taken a seminal step along the path to achieving Dr. Feynman's vision by observing, for the first time, distributions of individual dopant atoms in semiconductor devices. Atom probe tomography was used to quantify the location and elemental identity of the atoms proximate to defects in silicon. The dopants were implanted into the silicon uniformly and it was always hoped that the distribution of dopant atoms would be uniform. However, the IBM and Imago researchers found that clusters (more properly Cottrell atmospheres) of dopant atoms form around defects after ion implantation and annealing. Furthermore, these atmospheres persist in surrounding dislocation loops even after considerable thermal treatment creating dopant fluctuations that may ultimately limit the scalability of semiconductor devices.

"This is the first time that unambiguous quantitative 3D information regarding the precise location of individual dopant atoms relative to defects has been available", said study co-author and Imago CEO Tom Kelly. "The ability of the Imago LEAP 3000X Si laser assisted atom probe to make this measurement is the fruition of many years of instrumentation and applications development. We now have a powerful new way to probe the atomic positions of dopants in a semiconductor device. This is a critical tool for scientists seeking to answer Professor Feynman's challenge to manipulate matter at the atomic level and hence enable nanotechnology."

Previously, researchers have used secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM) to correlate indirectly the presence of dopant atoms with the evolution of defects, and detailed models have been proposed to account for these experimental correlations. However, the atom probe study published in Science reports, for the first time, the location of individual dopant atoms. Said Imago Senior Director of Applications and co-author David Larson, "The Sept. 7 Science article is the most recent in a series of significant scientific advances reported by Imago's customers." Added Dr. Larson, "In addition to producing breakthrough published scientific results, the Imago atom probe is also being applied to various industrial problems. These proprietary results are advancing scientific knowledge, enabling the development of new products, and improving time to market for our customers."

####

About Imago Scientific Instruments
Imago is a world class provider of metrology and analysis equipment serving the microelectronic and general research markets. We are committed to the development of the nanotechnology solutions required as the semiconductor, data storage and advanced materials industries increasingly enter the realm of nanotechnology. Imago provides time-to-market advantages to our customers through leading edge technology in the field of three-dimensional, nanoscale, metrology and analysis equipment. Imago’s manufacturing and engineering facilities are located in Madison, Wisconsin. Global sales and service offices are located throughout the United States, Europe, Japan, and Asia Pacific.

For more information, please click here

Contacts:
Imago Scientific Instruments Corporation
5500 Nobel Drive
Madison, WI 53711 USA
Phone: +1 (608) 274-6880
Toll-free: +1 (877) GO-IMAGO
Fax: +1 (608) 442-0622

Copyright © Imago Scientific Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Tools

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic