Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > IBM and Imago Find a Crucial Difficulty in Semiconductor Device Scaling

In 1959, Nobel Prize winner Richard Feynman presented a talk entitled "There's Plenty of Room at the Bottom." Feynman concluded that there was no physical reason why humans couldn't manipulate atoms. However, if atomic manipulation is achieved the question of observing the new atom positions remains. " How do you know what you have done?"

IBM and Imago Find a Crucial Difficulty in Semiconductor Device Scaling

Madison, WI | Posted on September 6th, 2007

As reported in the Sept. 7, 2007 issue of Science, IBM and Imago have taken a seminal step along the path to achieving Dr. Feynman's vision by observing, for the first time, distributions of individual dopant atoms in semiconductor devices. Atom probe tomography was used to quantify the location and elemental identity of the atoms proximate to defects in silicon. The dopants were implanted into the silicon uniformly and it was always hoped that the distribution of dopant atoms would be uniform. However, the IBM and Imago researchers found that clusters (more properly Cottrell atmospheres) of dopant atoms form around defects after ion implantation and annealing. Furthermore, these atmospheres persist in surrounding dislocation loops even after considerable thermal treatment creating dopant fluctuations that may ultimately limit the scalability of semiconductor devices.

"This is the first time that unambiguous quantitative 3D information regarding the precise location of individual dopant atoms relative to defects has been available", said study co-author and Imago CEO Tom Kelly. "The ability of the Imago LEAP 3000X Si laser assisted atom probe to make this measurement is the fruition of many years of instrumentation and applications development. We now have a powerful new way to probe the atomic positions of dopants in a semiconductor device. This is a critical tool for scientists seeking to answer Professor Feynman's challenge to manipulate matter at the atomic level and hence enable nanotechnology."

Previously, researchers have used secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM) to correlate indirectly the presence of dopant atoms with the evolution of defects, and detailed models have been proposed to account for these experimental correlations. However, the atom probe study published in Science reports, for the first time, the location of individual dopant atoms. Said Imago Senior Director of Applications and co-author David Larson, "The Sept. 7 Science article is the most recent in a series of significant scientific advances reported by Imago's customers." Added Dr. Larson, "In addition to producing breakthrough published scientific results, the Imago atom probe is also being applied to various industrial problems. These proprietary results are advancing scientific knowledge, enabling the development of new products, and improving time to market for our customers."


About Imago Scientific Instruments
Imago is a world class provider of metrology and analysis equipment serving the microelectronic and general research markets. We are committed to the development of the nanotechnology solutions required as the semiconductor, data storage and advanced materials industries increasingly enter the realm of nanotechnology. Imago provides time-to-market advantages to our customers through leading edge technology in the field of three-dimensional, nanoscale, metrology and analysis equipment. Imago’s manufacturing and engineering facilities are located in Madison, Wisconsin. Global sales and service offices are located throughout the United States, Europe, Japan, and Asia Pacific.

For more information, please click here

Imago Scientific Instruments Corporation
5500 Nobel Drive
Madison, WI 53711 USA
Phone: +1 (608) 274-6880
Toll-free: +1 (877) GO-IMAGO
Fax: +1 (608) 442-0622

Copyright © Imago Scientific Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Observing the unobservable: Researchers measure electron orbitals of molecules in 3-D October 6th, 2015

Superconductivity trained to promote magnetization: Russian scientist and her colleagues discovered the superconductivity effect, which will help to create future supercomputers October 6th, 2015

Nanoscale photodetector shows promise to improve the capacity of photonic circuits: Researchers at the University of Rochester have fabricated a device in which light can induce a current using a silver nanowire -- an important step toward harnessing light to speed up the next ge October 6th, 2015

Big range of behaviors for tiny graphene pores: Like biological channels, graphene pores are selective for certain types of ions October 6th, 2015


Electron tomography with 3,487 images in 3.5 seconds: High-speed electron tomography sets new standards for 3-D images of the nanoworld October 6th, 2015

Rice news release: Smaller is better for nanotube analysis: Rice University's variance spectroscopy technique advances nanoparticle analysis September 30th, 2015

Flex-ANA workshop at NCSU: Flex-ANA: An Automated System for Nanomechanical Analysis of Soft Materials — October 28 (NCSU, Raleigh, NC, US) September 30th, 2015

Nanosurf at the SYNMarburg 2015 Summer School: Nanosurf at the SYNMarburg 2015 Summer School September 30th, 2015

Alliances/Trade associations/Partnerships/Distributorships

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Pushing the limits of lensless imaging: At the Frontiers in Optics conference researchers will describe a custom-built ultrafast laser that could help image everything from semiconductor chips to cells in real time September 21st, 2015

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network: New center's focus will be on earth, environmental nanotechnology September 16th, 2015

Graphene Enhanced ARALDITE Resin Composite Materials September 14th, 2015

Research partnerships

Molecular nanoribbons as electronic highways October 6th, 2015

Observing the unobservable: Researchers measure electron orbitals of molecules in 3-D October 6th, 2015

Research improves efficiency from larger perovskite solar cells October 6th, 2015

ORNL researchers find 'greener' way to assemble materials for solar applications October 5th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic