Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCR engineers to develop new tool to measure how environmental exposures affect health

UCR engineers involved in the research project. Clockwise from top left: Ashok Mulchandani (pricipal investigator of the grant), Marc Deshusses, Nosang Myung and David Cocker.

Credit: Bourns College of Engineering, UC Riverside
UCR engineers involved in the research project. Clockwise from top left: Ashok Mulchandani (pricipal investigator of the grant), Marc Deshusses, Nosang Myung and David Cocker. Credit: Bourns College of Engineering, UC Riverside

Abstract:
National Institutes of Health grant of $2.2 million to fund four-year research in nanotechnology

UCR engineers to develop new tool to measure how environmental exposures affect health

Riverside, CA | Posted on September 4th, 2007

Engineers at UC Riverside's Bourns College of Engineering have received a four-year $2.2 million grant from the National Institutes of Health (NIH), to be shared with researchers at Arizona State University, to develop a key tool for exploring the environmental roots of common diseases.

Employing nanotechnology to create the tool, the research project will be part of a new nationwide effort by NIH to better understand the underlying causes of increasingly common diseases such as diabetes, hypertension, asthma, arthritis, and Alzheimer's disease, and the role that environmental exposures play in these diseases.

The project at UCR will involve the development of devices not available currently: inexpensive 4" by 4" badges, attachable to a person's clothes, for monitoring diesel and gasoline exhaust exposure.

"The sensor we are developing would for the first time allow monitoring of over 40 components of diesel and gasoline exhaust simultaneously in real-time," said Ashok Mulchandani, the principal investigator of the grant and a professor of chemical and environmental engineering. "Some of these exhaust toxics have been shown to cause respiratory illness and cancer."

The light-weight badges will each house an array of electrochemical nanosensors for detecting and measuring exhaust. The measurements will be used eventually in studies focusing on what role diesel and/or gasoline exhaust play in causing disease. The badges also will be equipped with low-power microelectronics for power management, data collection and transfer, and signal processing.

"This NIH grant is a wonderful validation of the leadership role we play in sensor technology," said Reza Abbaschian, dean of the Bourns College of Engineering. "The research this grant enables also supports our mission of providing excellent research and innovation to improve human health."

An expert in biosensors, nanobiotechnology and biodetoxification, Mulchandani explained that the unique arrays of independent sensors in each badge will offer real-time analytical information on trace concentrations of air-borne toxics and pollutants, making it possible to selectively and accurately monitor personal exposure.

"The research project is a part of the college's ongoing efforts in developing sensors for health care, environmental monitoring and homeland security," he said.

Mulchandani will be joined in the research project by UCR's Marc Deshusses, a professor of chemical and environmental engineering who will head the effort in modeling, experimental design and data analysis; Nosang Myung, an associate professor of chemical and environmental engineering who will provide expertise for nanoscale fabrication of the new sensor device; and David Cocker, an associate professor of environmental engineering who will lead the research on testing and validating the sensors, including their performance in real-time exposure conditions with diesel and gasoline exhaust.

They will collaborate with Arizona State University's Joseph Wang, Bertan Bakkaloglu and Andreas Spanias, who will contribute expertise in chemical sensors, signal processing, and wireless communications.

UCR's Office of Technology Commercialization has pending patent applications that cover some aspects of the sensors that will be used in the experiment.

The grant is awarded by NIH's National Institute of Environmental Health Science, as part of the NIH "Genes, Environment and Health Initiative." Multiple NIH agencies have invested a total of approximately $48 million for this inaugural year of the initiative. Expected to be funded for a total of four years, the initiative aims to analyze genetic variation in groups of patients with specific illnesses; and both produce and validate new methods for monitoring environmental exposures that interact with genetic variation to result in human diseases.

UCR will receive $1.5 million of the funding, with Arizona State University receiving the rest. For the inaugural year, the UCR project will receive nearly $567,000, with Arizona State University receiving approximately a third of this amount. The project is expected to begin this fall.

####

About University of California - Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit http://www.ucr.edu or call (951) UCR-NEWS.

The Bourns College of Engineering (BCOE), established in 1989, is the one of the newest engineering schools in California and is ranked among the best public engineering colleges of its size in the nation. The faculty and student populations have both tripled in the past seven years, with new facilities and state-of-the-art laboratories, equipment and technology infrastructure keeping pace with the growth. Interdisciplinary and collaborative efforts are a hallmark of the College in education, research and industrial partnerships, particularly in three affiliated research centers. BCOE offers an interdisciplinary major in Materials Science and Engineering, as well as B.S., M.S. and Ph.D. degrees through the five College departments: Bioengineering, Chemical & Environmental, Computer Science, Electrical and Mechanical.

For more information, please click here

Contacts:
Iqbal Pittalwala

951-827-6050

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Environment

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic