Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Nanotechnology is key to next-generation tissue and cell engineering

August 27th, 2007

Nanotechnology is key to next-generation tissue and cell engineering

Abstract:
In the medical field there is a huge demand for tissue regeneration technologies, which covers a wide range of potential applications in such areas as cartilage, vascular, bladder and neural regeneration. Just consider the need for bone and dental implants: Each year, almost 500,000 patients receive hip implants worldwide, about the same number need bone reconstruction due to injuries or congenital defects and 16 million Americans loose teeth and may require dental implants. The market for medical implant devices in the U.S. alone is estimated to be $23 billion per year and it is expected to grow by about 10% annually for the next few years. Unfortunately, medical implant devices have been associated with a variety of adverse reactions, including inflammation and fibrosis. It has been suggested that poor tissue integration is responsible for loosening of implants and mechanical damage to the surrounding host tissues. Based on an expanding body of biomedical nanotechnology research work, there is a growing consensus among scientists that nanostructured implant materials may have many potential advantages over existing, conventional ones. The key, as indicated in a number of findings, seems to be that physical properties of materials, especially with regard to their surface's nanostructure, affect cell attachment and eventually the tissue response to the implant. Although nanotopography mediated cell responses have been shown in previous work, the mechanism of these responses is mostly undetermined. New research has now been conducted to determine the influence of nanopore size on cellular responses. Interestingly, these studies have revealed that larger nanopores (200 nm) trigger DNA replication and cell proliferation via various signal transduction pathways.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Nanobiotechnology

Making nanowires from protein and DNA September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic