Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > High-sensitivity, rapid-response nanotechnology NOx sensor

August 27th, 2007

High-sensitivity, rapid-response nanotechnology NOx sensor

Abstract:
Koichi Hamamoto,a post-doctoral Research Scientist in the Functional Assembly Technology Group at the Advanced Manufacturing Research Institute of the National Institute of Advanced Industrial Science and Technology (AIST) has developed a high-sensitive nitrogen oxide (NOx) sensor with a rapid response.

Strenuous efforts are being made to develop clean-burn technologies for gasoline-fueled vehicles to comply with societal demands for reducing CO2 emissions and better fuel consumption. However, although clean-burn engines produce less CO2 emissions, they produce more NOx emissions than conventional engines. Existing three-way catalysts cannot be used to eliminate NOx emissions under lean combustion because of the high concentration of oxygen in the exhaust gases. Instead of the three-way catalyst, a practical clean-burn engine uses a NOc storage-reduction catalyst system. A NOc trap material in this catalyst absorbs NOx during lean-burn condition. When the catalyst becomes saturated with NOx, a rich spike (excessive fuel supply) is generated in the engine, and this excessive amounts of fuel reduces and purifies the absorbed NOx.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Discoveries

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Automotive/Transportation

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE