Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Detergents, eye rinses and other products with an on/off switch

The tube on the left shows the original emulsion, while the one on the right shows the rapid separation of the emulsion into oil and water after a newly developed "switchable" detergent is added.

Credit: Courtesy of Annette Dexter, the University of Queensland
The tube on the left shows the original emulsion, while the one on the right shows the rapid separation of the emulsion into oil and water after a newly developed "switchable" detergent is added.

Credit: Courtesy of Annette Dexter, the University of Queensland

Abstract:
Researchers in Australia have developed a "switchable" detergent with a wide range of potential applications — from a laundry detergent that hardly needs a rinse cycle to a non-irritating eye rinse to increasing the amount of oil that companies can extract from a well.

Detergents, eye rinses and other products with an on/off switch

Boston, MA | Posted on August 21st, 2007

The unusual product, described here today at the 234th national meeting of the American Chemical Society, is a biological detergent or surfactant, called a Pepfactant® because it is made from peptides, the building blocks of proteins.

"One of the possible applications that we are aware of is a surfactant that would switch between the wash cycle and rinse cycle during clothes washing, which would mean you could remove visible suds without having to use as large a quantity of water," said biochemist Annette Dexter, Ph.D., of the Australian Institute for Bioengineering and Nanotechnology at The University of Queensland. Dexter is a co-inventor of pepfactants, along with Queensland colleague Anton Middelberg, a chemical engineer.

The unique aspect of the pepfactant is that it can be "switched on" or "switched off" depending on its intended application. For example, in laundry detergents there is a built-in pH change that occurs between the wash and rinse cycles. Pepfactants that are designed to respond to that pH change could be added to the detergent to reduce the rinse time, Dexter noted.

During the wash cycle, the pepfactant would be in the "on" position, allowing the detergent to clean soiled clothes. During the rinse cycle when the pH changes, the pepfactant switches "off," allowing the suds to be removed with much less water than conventional detergents. Similarly, the pepfactants can be used to help separate oil from water and increase the number of barrels of oil that can be extracted from a well. "Currently, as little as one-third of the oil present underground is actually extracted from a well," Dexter said.

Compared to conventional surfactants, which cost about $10 per kilogram (2.2 pounds), biologically synthesized pepfactants are expensive, according to Dexter, about $500 per kilogram. But, she added, "We are trying to bring that down by an order of magnitude."

Despite the cost, the enormous potential that pepfactants offer has prompted inquiries from industry. There has been some commercial interest from detergent manufacturers, Dexter said, but she feels the more near-term application could be in the personal care area such as a shampoo, conditioner, skin cream or hand wash. There also could be potential applications for eye drops, she added.

"Chemical surfactants generally are very irritating to biological tissue. We could use our peptide surfactants in that context because they are extremely mild, so they could be used directly as a cleaning application."

"They also could be used in drug delivery," Dexter said. "Some companies have products in clinical trials that could deliver antibiotics to the eye, which are not water soluble. They are delivering those as an emulsion. So there's something we could do with pepfactants, with the additional angle that we could then have that emulsion respond to the pH of the eye so that it would spread across the eye and not be washed away by the tears."

The potential applications of pepfactants are so broad that it's difficult to say which application might be the first to reach the market, according to Dexter. There has been some commercial interest, she said, and hopes that something in the personal care area might be available within the next 18 months.

####

About American Chemical Society
The American Chemical Society — the world’s largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

— M.D. Coyner

Note for reporters’ use only: For full information about the Boston meeting, including access to abstracts of more than 9,500 scientific papers and hundreds of non-technical summaries, visit http://www.acspresscenter.org . News release images are available at http://chemistry.org/bostonnews/images.html .

The paper on this research, COLL 384, will be presented at 3:25 p.m., Tuesday, Aug. 21, at the Boston Convention & Exhibition Center, Room 153B, during the symposium, “Surfactants and Polymers for Personal, Home and Health Care.”

Annette F. Dexter, Ph.D., is a researcher with the Interfacial Bioengineering Group at the Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.

Professor Anton P.J. Middelberg is an ARC Federation Fellow and Professor of Chemical and Biomolecular Engineering at the Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia.

For more information, please click here

Contacts:
Charmayne Marsh

617-954-3488 (Boston, Aug. 19-23)
202-872-4400 (Washington, D.C.)

Michael Bernstein

617-954-3488 (Boston, Aug. 19-23)
202-872-4400 (Washington, D.C.)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Home

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project