Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Truly sick or simply scared?

Researchers at PNNL are developing a portable biomonitor to rapidly evaluate tiny samples of blood or saliva for exposure to nerve agents.
Researchers at PNNL are developing a portable biomonitor to rapidly evaluate tiny samples of blood or saliva for exposure to nerve agents.

Abstract:
Small nano-based biosensor may get help first to those who need it most

Truly sick or simply scared?

Richland, WA | Posted on August 19th, 2007

Scientists at Pacific Northwest National Laboratory have discovered a way to increase the sensitivity of test strips that will enable creation of a portable biosensor that can address a major concern associated with incidents involving chemical or nerve agents - the need to quickly distinguish between individuals who have been exposed and the "worried well."

The sensor components resemble a pregnancy test strip and a small glucose testing meter. Its development will be discussed by principal investigator Yuehe Lin at the national meeting of the American Chemical Society.

Every disease has biomarkers, a change in the proteins that announces something is wrong. Lin and his team are creating a nanoparticle "label" that can increase the ability of a sensor to detect and interpret the message of biomarkers.

"Current test strip based-immunoassay technology has very good selectivity, but it can only give a positive or negative response," Lin said.

The researchers are working with an "electrochemical immunoassay approach." This involves using the antibody of a specific disease — a protein produced in response to an invading bacterium or other foreign substance — to attract the biomarker. Lin found that labeling a second antibody with a nanoparticle amplifies the biomarker's signal. Greater amplification means more precise readings.

Lin achieves this by removing the iron from a nanoparticle-sized ball of the protein ferrin, creating an empty "cage" called apoferritin, which he then loads with another metal, such as cadmium. The cadmium-filled cage is attached to one end of the reporting antibody, and the immuno-reaction product becomes electroactive.

"The electrochemical signal is amplified several hundreds to thousand times because of the metal ions," Lin said. "This level of sensitivity will allow detectors to be very precise in identifying the concentration of biomarkers in biological samples."

The five-year biosensor effort is funded by a $3.5 million grant from the National Institutes of Health Countermeasures Against Chemical Threats (CounterACT) Research Network through the National Institute of Neurological Disorders and Stroke. A key resource for the biosensor research is the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility located at PNNL.

Yuehe Lin made his presentation at the 234th American Chemical Society National Meeting in Boston, Mass., on Sunday, August 19, at 2:40 p.m. at the Boston Convention & Exhibition Center in room 151B.

####

About Pacific Northwest National Laboratory
PNNL is one of the U.S. Department of Energy's (DOE's) ten national laboratories, managed by DOE's Office of Science. PNNL also performs research for other DOE offices as well as government agencies, universities, and industry to deliver breakthrough science and technology to meet today's key national needs. Our Laboratory

* provides the facilities, unique scientific equipment, and world-renowned scientists/engineers to strengthen U.S. scientific foundations for fundamental research and innovation
* prevents and counters acts of terrorism through applied research in information analysis, cyber security, and the non-proliferation of weapons of mass destruction
* increases U.S. energy capacity and reduces dependence on imported oil through research of hydrogen and biomass-based fuels
* reduces the effects of energy generation and use on the environment.

PNNL currently has approximately 4,200 staff members and a business volume of $750 million. The William R. Wiley Environmental Molecular Sciences Laboratory, a DOE Office of Science national scientific user facility, is located on PNNL's Richland campus. PNNL operates a marine research facility in Sequim, and has satellite offices in Seattle and Tacoma, Washington; Portland, Oregon; and Washington, D.C.

For more information, please click here

Contacts:
Geoff Harvey
PNNL
(509) 372-6083

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Sensors

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Discoveries

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Homeland Security

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project