Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Truly sick or simply scared?

Researchers at PNNL are developing a portable biomonitor to rapidly evaluate tiny samples of blood or saliva for exposure to nerve agents.
Researchers at PNNL are developing a portable biomonitor to rapidly evaluate tiny samples of blood or saliva for exposure to nerve agents.

Abstract:
Small nano-based biosensor may get help first to those who need it most

Truly sick or simply scared?

Richland, WA | Posted on August 19th, 2007

Scientists at Pacific Northwest National Laboratory have discovered a way to increase the sensitivity of test strips that will enable creation of a portable biosensor that can address a major concern associated with incidents involving chemical or nerve agents - the need to quickly distinguish between individuals who have been exposed and the "worried well."

The sensor components resemble a pregnancy test strip and a small glucose testing meter. Its development will be discussed by principal investigator Yuehe Lin at the national meeting of the American Chemical Society.

Every disease has biomarkers, a change in the proteins that announces something is wrong. Lin and his team are creating a nanoparticle "label" that can increase the ability of a sensor to detect and interpret the message of biomarkers.

"Current test strip based-immunoassay technology has very good selectivity, but it can only give a positive or negative response," Lin said.

The researchers are working with an "electrochemical immunoassay approach." This involves using the antibody of a specific disease — a protein produced in response to an invading bacterium or other foreign substance — to attract the biomarker. Lin found that labeling a second antibody with a nanoparticle amplifies the biomarker's signal. Greater amplification means more precise readings.

Lin achieves this by removing the iron from a nanoparticle-sized ball of the protein ferrin, creating an empty "cage" called apoferritin, which he then loads with another metal, such as cadmium. The cadmium-filled cage is attached to one end of the reporting antibody, and the immuno-reaction product becomes electroactive.

"The electrochemical signal is amplified several hundreds to thousand times because of the metal ions," Lin said. "This level of sensitivity will allow detectors to be very precise in identifying the concentration of biomarkers in biological samples."

The five-year biosensor effort is funded by a $3.5 million grant from the National Institutes of Health Countermeasures Against Chemical Threats (CounterACT) Research Network through the National Institute of Neurological Disorders and Stroke. A key resource for the biosensor research is the Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility located at PNNL.

Yuehe Lin made his presentation at the 234th American Chemical Society National Meeting in Boston, Mass., on Sunday, August 19, at 2:40 p.m. at the Boston Convention & Exhibition Center in room 151B.

####

About Pacific Northwest National Laboratory
PNNL is one of the U.S. Department of Energy's (DOE's) ten national laboratories, managed by DOE's Office of Science. PNNL also performs research for other DOE offices as well as government agencies, universities, and industry to deliver breakthrough science and technology to meet today's key national needs. Our Laboratory

* provides the facilities, unique scientific equipment, and world-renowned scientists/engineers to strengthen U.S. scientific foundations for fundamental research and innovation
* prevents and counters acts of terrorism through applied research in information analysis, cyber security, and the non-proliferation of weapons of mass destruction
* increases U.S. energy capacity and reduces dependence on imported oil through research of hydrogen and biomass-based fuels
* reduces the effects of energy generation and use on the environment.

PNNL currently has approximately 4,200 staff members and a business volume of $750 million. The William R. Wiley Environmental Molecular Sciences Laboratory, a DOE Office of Science national scientific user facility, is located on PNNL's Richland campus. PNNL operates a marine research facility in Sequim, and has satellite offices in Seattle and Tacoma, Washington; Portland, Oregon; and Washington, D.C.

For more information, please click here

Contacts:
Geoff Harvey
PNNL
(509) 372-6083

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Sensors

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Discoveries

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Announcements

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Homeland Security

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project