Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > LSU professors work to improve efficiency of ethanol fuel

Abstract:
US Department of Energy and Conoco-Phillips fund research to produce better alternative fuel

LSU professors work to improve efficiency of ethanol fuel

Louisiana State University | Posted on August 13th, 2007

Lowering fuel emission levels is a topic facing constant scrutiny by the global public. Rising gas costs, environmental concerns and conflicts in oil-producing areas have made consumers, corporations and researchers more than curious about the potential of alternative, or "green," fuels, such as ethanol.

James Spivey, McLaurin Shivers professor of chemical engineering at LSU, and Challa Kumar, group leader of nanofabrication at LSU�s Center for Advanced Microstructures and Devices, or CAMD, are working diligently with partners from across the nation to make ethanol fuel an efficient reality.

Together with Clemson University and Oak Ridge National Laboratories, the researchers received $2.9 million in funding from the U.S. Department of Energy, or DOE, and its cost-sharing partner, Conoco-Phillips, the third-largest integrated energy company in the nation.

"We're working with our project partners to produce ethanol from a coal-derived syngas, a mixture of primarily carbon monoxide and hydrogen. The United States has tremendous reserves of coal, but converting it to affordable, clean fuels is a challenge "one that we are addressing in this DOE-funded project," said Spivey. "Because ethanol is a liquid, it can be more easily distributed to the end user than gaseous hydrogen. It can be converted into a hydrogen-rich gas at the point of use, such as a fuel cell. The net result is clean energy produced from a domestic resource."

James Goodwin, chairman of the chemical and biomolecular engineering department at Clemson, and David Bruce, associate professor of chemical and biomolecular engineering at Clemson, are using advanced computational methods to identify new catalysts and test them with techniques such as isotopic labeling.

LSU doctoral students Femi Egbebi and Nachal Subramanian are carrying out research with Spivey in the preparation and testing of these catalysts, determining which ones produce the desired results.

Steve Overbury and Viviane Schwarz at the Oak Ridge National Laboratory will test new catalysts with their specialized equipment while Joe Allison and Vis Viswanathan at Conoco-Phillips will analyze the costs and commercial potential of the overall process.

Kumar is in charge of designing and synthesizing novel nano-structured catalysts using wet-chemical synthesis capabilities available at CAMD in addition to utilizing synchrotron radiation-based X-ray absorption spectroscopy tools. Nanomaterials having unique core-shell architecture that are currently under development at CAMD are anticipated to enhance ethanol production significantly.

"It is CAMD's vision to be in the forefront of development of nanomaterials for a broad range of applications ranging from catalysis to medical diagnosis and therapy," said Kumar.

"The DOE is definitely interested in seeing a commercial project come out of this," said Spivey. "Our project team is committed to making this happen. A successful project will help show that LSU is focused on research that makes sense for the environment and for our country."

####

About BATON ROUGE, LA
Since 1860, LSU has served the people of Louisiana, the region, the nation, and the world through extensive, multipurpose programs encompassing instruction, research, and public service. The University brings in more than $144.7 million annually in outside research grants and contracts, a significant factor for the Louisiana economy.

For more information, please click here

Contacts:
Ashley Berthelot

225-578-3870

Copyright © Louisiana State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project