Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ESF EURYI award winner aims to stop cancer cells reading their own DNA

Dr. Nynke Hester Dekker

Delft University of Technology
Dr. Nynke Hester Dekker
Delft University of Technology

Abstract:
A promising new line in anti-cancer therapy by blocking the molecular motors involved in copying genetic information during cell division is being pursued by young Dutch researcher Dr. Nynke Dekker in one of this year's EURYI award winning projects sponsored by the European Science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS). Dekker and her team are trying to stop tumor development by interfering with the molecular motors that copy DNA during cell division. This will cut off the genetic information flow that tumours need to grow, and could complement existing cancer therapies, while in the longer term bringing the promise of improved outcomes with greatly reduced side effects.

ESF EURYI award winner aims to stop cancer cells reading their own DNA

Europe | Posted on August 9th, 2007

There are three primary ways of treating cancer at present, and these have fundamentally changed little in 30 years. In the case of solid tumours, surgery can be used to cut out the cancerous tissue, while radiation therapy can kill the malignant cells, and chemotherapy stops them dividing. Dekker's work is aiming towards a new generation of drugs that target cancer cells much more specifically than traditional chemotherapy, avoiding side effects such as temporary hair loss.

Dekker is focusing on an enzyme called Topoisomerase IB that plays a key role in some of the molecular motors involved in the processes of DNA and RNA copying during cell division. These are responsible for reading the genetic code and making sure it is encoded correctly in the daughter cell. In healthy cells it is important that this process works normally, but in cancer cells it is a natural target for disruptive therapy. "Specifically targeting these molecular motors in cancer cells would then prevent the cancer cells from growing into a larger tumor," said Dekker. This molecular copying machinery, constructed mostly out of proteins, in effect walks along the DNA double helix reading the genetic code so that it can be copied accurately into new DNA during division. Other components of the machinery are responsible for slicing and assembling the DNA itself. All of these are potential targets for anti-cancer therapy, providing it is possible to single out the tumor cells. Most existing chemotherapy targets all dividing cells, and the aim to find more sensitive techniques.

However Dekker's work is not just confined to cancer, having the broader goal within the ESF EURYI project of unraveling the underlying physical principles behind these molecular motors that operate at the nanometer scale to process and manipulate the information stored within the DNA and RNA of our cells. Dekker is exploiting a variety of new highly sensitive manipulation and imaging techniques capable of resolving single molecules. These include force spectroscopy, new forms of optical microscopy with greatly improved resolving power and field depth, as well as nanotechnologies. The research involves cross-disciplinary work among scientists in different fields with the long term goal of developing more precisely targeted molecular medicines for a variety of diseases involving disruption to normal cellular functions and not just cancer.

Dekker's work has already shown great promise, and she has been able to predict what effect certain antitumor drugs would have on the basis of her molecular insights, confirming her hypotheses in yeast cells. "Indeed the work with antitumor drugs is, as far as I know, the first experiment in which single-molecule experiments have resulted in a prediction for a cellular effect," said Dekker.

Dekker, a 36-year-old Dutch associate professor at the Technische Universiteit Delft in the Netherlands, is currently undertaking single-molecule studies of DNA and RNA and their interactions with proteins, integrated with nanotechnology where appropriate. She gained her PhD in physics at Harvard University, having graduated from Yale.

As well as being awarded multiple grants and fellowship programmes, Dr. Dekker is a member of the Council of the Biophysical Society, and of the Young Academy of the Royal Academy of Arts and Sciences. She is actively involved in conference organization at the interface of biology and physics. Her group's research has appeared in Nature and in The Proceedings of the National Academy, USA, among others.

The EURYI awards scheme, entering its fourth and final year, is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between €1,000,000 and €1,250,000, comparable in size to the Nobel Prize. Dekker will receive his award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

More on Dekker's work http://www.esf.org/activities/euryi/awards/2007/nynke-hester-dekker.html

More on EURYI: http://www.esf.org/ext-ceo-news-singleview/article/2007-euryi-20-young-researchers-to-receive-nobel-prize-sized-awards-for-breakthrough-ideas-294.html

####

About European Science Foundation
The European Science Foundation (ESF) is an association of 75 member organisations devoted to scientific research in 30 European countries. Since we were established in 1974, we have coordinated a wide range of pan-European scientific initiatives, and our flexible organisation structure means we can respond quickly to new developments.

For more information, please click here

Contacts:
Thomas Lau

33-388-762-158

Copyright © European Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Human Interest/Art

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

To Conserve London's 300-Year-Old Masterpiece, Nanotech & Drones April 12th, 2015

2015 Nanonics Image Contest January 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project