Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticle technique could lead to improved semiconductors

Abstract:
Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

Nanoparticle technique could lead to improved semiconductors

Austin, TX | Posted on August 6th, 2007

As electrical charges travel through plastic semiconductors, they can be trapped much like a marble rolling on a bumpy surface becomes trapped in a deep hole. These traps of charges are known as "deep traps," and they are not well understood.

Deep traps can be desired, as in the case of plastic semiconductors used for memory devices, but they can also decrease the efficiency of the material to conduct electrical charges. In the case of solar cells, deep traps can decrease the efficiency of the conversion of light into electricity.

To further explore the deep trap phenomenon, a group of scientists led by Professors of Chemistry and Biochemistry Paul Barbara and Allen Bard developed a single-particle technique to study small portions of semiconductor material at the nanoscale.

The scientists reported their findings in the advanced online issue of the journal Nature Materials.

"Our results strongly suggest that deep traps are formed in plastic semiconductors by a charge induced chemical reaction," says Dr. Rodrigo Palacios, lead author and post-doctoral fellow at the Center for Nano and Molecular Science and Technology. "These traps were not there in the uncharged pristine material."

Deep traps could be caused by defects in the semiconductor material—either native to the material or introduced impurities—with special properties that encourage charge trapping. The traps also could develop over the life of the semiconductor.

Previous techniques used to study deep traps have generally involved completed semiconductor devices, which Palacios says creates complications due to the complexity of a functional device.

For the current study, Palacios used a conjugated polymer (plastic semiconductor) material known as F8BT, which is commercially available and has promising applications in organic LEDs and solar cells.

He produced particles of F8BT with diameters about one-ten thousandth that of a human hair. He then shone light on the nanoparticles and measured changes in intensity of the resulting fluorescence. (This type of semiconductor material takes in light energy and releases part of this energy as light of a different color.)

Palacios observed deep traps forming as he electrochemically charged and discharged the semiconductor nanoparticles. The deep traps led to decreases in light emission from the material.

"With our new technique, we got detailed information on how these deep traps are formed and how long they live," says Palacios. "In principle, this kind of information can be used to improve devices made out of these conjugated polymers, designing new materials that can avoid these deep traps or materials that might be able to form these deep traps better."

####

About University of Texas at Austin
Founded in 1883, UT is one of the largest and most respected universities in the nation. The Times of London ranked UT second among U.S. public universities in its ranking of the world's top 200 universities.

For more information, please click here

Contacts:
Dr. Rodrigo Palacios

512-471-5535

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

Chip Technology

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Announcements

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Energy

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Solar/Photovoltaic

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project