Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Changing the rings: a key finding for magnetics design

August 3rd, 2007

Changing the rings: a key finding for magnetics design

Abstract:
Researchers at the National Institute of Standards and Technology's Center for Nanoscale Science and Technology (CNST) have done the first theoretical determination of the dominant damping mechanism that settles down excited magnetic states—"ringing" in physics parlance—in some key metals. Their results, published in the Physical Review Letters ("Identification of the Dominant Precession-Damping Mechanism in Fe, Co, and Ni by First-Principles Calculations"), point to more efficient methods to predict the dynamics of magnetic materials and to improve the design of key materials for magnetic devices.

The ability to control the dynamics of magnetic materials is critical to high-performance electronic devices such as magnetic field sensors and magnetic recording media. In a computer's magnetic storage—like a hard disk—a logical bit is represented by a group of atoms whose electron "spins" all are oriented in a particular direction, creating a minute magnetic field. To change the bit from, say, a one to a zero, the drive's write head imposes a field in a different direction at that point, causing the electrons to become magnetically excited. Their magnetic poles begin precessing—the same motion seen in a child's spinning top when it's tilted to one side and begins rotating around a vertical axis. Damping is what siphons off this energy, allowing the electron spins to settle into a new orientation. For fast write speeds—magnetization reversals in a nanosecond or faster—a hard disk wants strong damping.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE