Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Changing the rings: a key finding for magnetics design

August 3rd, 2007

Changing the rings: a key finding for magnetics design

Abstract:
Researchers at the National Institute of Standards and Technology's Center for Nanoscale Science and Technology (CNST) have done the first theoretical determination of the dominant damping mechanism that settles down excited magnetic states—"ringing" in physics parlance—in some key metals. Their results, published in the Physical Review Letters ("Identification of the Dominant Precession-Damping Mechanism in Fe, Co, and Ni by First-Principles Calculations"), point to more efficient methods to predict the dynamics of magnetic materials and to improve the design of key materials for magnetic devices.

The ability to control the dynamics of magnetic materials is critical to high-performance electronic devices such as magnetic field sensors and magnetic recording media. In a computer's magnetic storage—like a hard disk—a logical bit is represented by a group of atoms whose electron "spins" all are oriented in a particular direction, creating a minute magnetic field. To change the bit from, say, a one to a zero, the drive's write head imposes a field in a different direction at that point, causing the electrons to become magnetically excited. Their magnetic poles begin precessing—the same motion seen in a child's spinning top when it's tilted to one side and begins rotating around a vertical axis. Damping is what siphons off this energy, allowing the electron spins to settle into a new orientation. For fast write speeds—magnetization reversals in a nanosecond or faster—a hard disk wants strong damping.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Better memory with faster lasers July 14th, 2015

Discoveries

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project