Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Changing the rings: a key finding for magnetics design

August 3rd, 2007

Changing the rings: a key finding for magnetics design

Abstract:
Researchers at the National Institute of Standards and Technology's Center for Nanoscale Science and Technology (CNST) have done the first theoretical determination of the dominant damping mechanism that settles down excited magnetic states—"ringing" in physics parlance—in some key metals. Their results, published in the Physical Review Letters ("Identification of the Dominant Precession-Damping Mechanism in Fe, Co, and Ni by First-Principles Calculations"), point to more efficient methods to predict the dynamics of magnetic materials and to improve the design of key materials for magnetic devices.

The ability to control the dynamics of magnetic materials is critical to high-performance electronic devices such as magnetic field sensors and magnetic recording media. In a computer's magnetic storage—like a hard disk—a logical bit is represented by a group of atoms whose electron "spins" all are oriented in a particular direction, creating a minute magnetic field. To change the bit from, say, a one to a zero, the drive's write head imposes a field in a different direction at that point, causing the electrons to become magnetically excited. Their magnetic poles begin precessing—the same motion seen in a child's spinning top when it's tilted to one side and begins rotating around a vertical axis. Damping is what siphons off this energy, allowing the electron spins to settle into a new orientation. For fast write speeds—magnetization reversals in a nanosecond or faster—a hard disk wants strong damping.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE