Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Wrinkle in Thin Film Science

A starburst of wrinkles form in a thin film material when a drop of water is placed on the film as it floats in water. These remarklably simple experiments, done with a pool of water in a Petri dish and a low-magnification microscope, give researchers insight into whether the material properties of ultrathin films differ from their properties in bulk quantities.

Credit: Jiangshui Huan, University of Massachusetts, Amerherst
A starburst of wrinkles form in a thin film material when a drop of water is placed on the film as it floats in water. These remarklably simple experiments, done with a pool of water in a Petri dish and a low-magnification microscope, give researchers insight into whether the material properties of ultrathin films differ from their properties in bulk quantities.

Credit: Jiangshui Huan, University of Massachusetts, Amerherst

Abstract:
Simple, inexpensive way to measure material properties could impact cosmetics, coating and nanoelectronic industries

A New Wrinkle in Thin Film Science

Arlington, VA | Posted on August 3rd, 2007

A remarkably simple experiment devised by scientists yields important information about the mechanical properties of thin films--nanoscopically thin layers of material that are deposited onto a metal, ceramic or semiconductor base.

The research results, funded by the National Science Foundation and performed at the University of Massachusetts at Amherst Materials Research Science and Engineering Center, appears in the August 3, 2007, issue of Science.

The findings impact a broad range of scientific disciplines and applications, from cosmetics to coatings, to micro- and nanoelectronics. Understanding the mechanical properties of thin films is essential to their performance and optimization.

Until now, determining the mechanical properties of these thin films was either an expensive and time-consuming endeavor, requiring powerful microscopes to view the films, or scientists examined composite structures and made uncertain assumptions. This new research will give scientists a simple way to access the material properties of most thin films.

"As we delve more into the nanotechnology, it becomes increasingly important to know if the material properties of ultrathin films differ from their properties in the bulk," said Thomas Russell, a program director in the Polymer Science and Engineering Department at the University of Massachusetts in Amherst. "Everyday we see examples where a material's dimensions can change its properties. Aluminum foil is flexible, whereas a bar of aluminum is not. But what happens when a film's thickness approaches molecular dimensions? These experiments give us a simple, inexpensive way to measure mechanical properties of films that are only tens of nanometers thick."

Russell and his colleagues use a low-power optical microscope to observe what happens when they place a tiny drop of water on thin film as it floats in a Petri dish of water. The "capillary tension" of the drop of water produces a starburst of wrinkles in the film. The number and length of the wrinkles are determined by the elasticity and thickness of the film.

In some of the materials studied, the wrinkles in the ultrathin polymer films vanished with time, unlike the skin of a dried fruit or the crumpled hood of your car after an accident. This vanishing provides insight into the relaxation process of an ultrathin film by yielding information on the way polymer chains move in the highly confined geometry.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Diane E. Banegas, NSF
(703) 292-8070

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Personal Care

Sunblock poses potential hazard to sea life August 20th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOLŪ Technology again August 12th, 2014

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

Production of Nanocapsule from Sea-Buckthorn Extract in Iran May 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE