Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ultra-Precision XYZ Piezo Nano-Positioning Stage Scans & Positions Faster and More Accurately

The P-733.3CD XYZ nanopositioning scanning stage with an E-761 PCI bus Piezo controller
The P-733.3CD XYZ nanopositioning scanning stage with an E-761 PCI bus Piezo controller

Abstract:
PI (Physik Instrumente) a leading manufacturer of nanopositioning and piezo-based precision motion-control equipment for nanotechnology, photonics and semiconductor applications offers a new XYZ nanopositioning / scanning stage, dubbed P-733.3CD. These high-resolution stages are designed for materials research, high resolution microscopy and imaging applications. The parallel-kinematics design (only one common moving platform for XYZ) reduces the moved mass, and enables -- together with the stiff design--higher operating speeds than other piezo scanning stages.

Ultra-Precision XYZ Piezo Nano-Positioning Stage Scans & Positions Faster and More Accurately

Auburn, MA | Posted on August 2nd, 2007

Features & Advantages:
- Travel Ranges of 100 x 100 m in X/Y and 10 m in Z
- Direct Metrology with Capacitive Sensors for up to 0.1 Nanometers Resolution
- Parallel Kinematics for Better Multi-Axis Accuracy and Dynamics
- 50 x 50 mm Clear Aperture for Transmitted-Light Applications

Typical Applications: Scanning Microscopy, Nanomanipulation, Metrology / Interferometry, Biotechnology, Semiconductor Testing, Mask / Wafer Positioning, Image Enhancement / Stabilization

More Information:
http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=201200

About P-733.3CD Nanopositioning Scanning Stages
P-733 are fast and highly accurate XYZ nanopositioning and scanning stages. These piezo systems provide a positioning and scanning range of 100x100x10m together with sub-nanometer precision. The large clear aperture is an advantage in transmitted-light applications. The high-speed Z-axis (sub-millisecond response time) can actively compensate out-of-plane, Z-axis deviation during XY scans.

Capacitive Nano Measuring Sensors Provide Higher Linearity

Capacitive nano-measuring sensors read the platform position directly and without physical contact. This makes them free of friction and hysteresis, and allows very high levels of linearity, up to 99.99% with resolution to 0.1 nanometers. The Parallel Metrology configuration measures all axes against the same fixed reference, providing better precision than serial (individual) metrology.

Parallel Kinematics for High Trajectory Fidelity

In a parallel kinematics multiaxis system, all actuators act directly on the same moving platform. This means symmetrical dynamic properties of the X and Y axes, a prerequisite for fast, high-linearity scanning.

####

About PI (Physik Instrumente) L.P.
PI is a leading manufacturer of nanopositioning and precision motion-control equipment for photonics, nanotechnology, semiconductor and life science applications. PI has been developing and manufacturing standard & custom precision products with piezoelectric and electromagnetic drives for 35+ years. The company has been ISO 9001 certified since 1994 and provides innovative, high-quality solutions for OEM and research. PI is present worldwide with eight subsidiaries and total staff of 450+.

For more information, please click here

Contacts:
Stefan Vorndran
Dir. Corp. Product Marketing & Communications
-----------------------------
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
email:
Tel: 508-832-3456,
Fax: 508-832-0506
http://www.pi.ws
http://www.pi-usa.us

Copyright © PI (Physik Instrumente) L.P.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tools

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE