Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Conductive Nano-wires Created Using Self-assembly on Silicon Chips

Abstract:
A team of researchers from Canada have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. Process can produce nano-wires that are 5,000 times longer than they are wide.

Conductive Nano-wires Created Using Self-assembly on Silicon Chips

Canada | Posted on August 2nd, 2007

A team of researchers from the National Research Council and the University of Albert at the National Institute for Nanotechnology(NINT) have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. This meets the need for connecting ever smaller transistors and other electronic components in a way that allows the user to control the composition, structure and placement of the nano-wire. Since it is also compatible with existing silicon-based fabrication techniques, it has significant potential for commercial applications. The process is described in a paper title "Assembly of aligned linear metallic patterns on silicon" published in the August 2, 2007 issue of Nature Nanotechnology and is available on-line at http://www.nature.com/nnano/index.html

The first step in the process is to facilitate the assembly of a class of polymers, called block co-polymers, within micron-scale lithographically-defined channels on the silicon surface. The block co-polymers spontaneously self-assemble into lines as narrow as 10 nanometres in diameter. These structures are then loaded with the desired metal ion in water, and the block co-polymers are removed by a plasma treatment, leaving behind the nano-wires. The resulting wires are conductive and can be created in a variety of shapes and lengths.

In one example, 25 parallel platinum nano-wires were made using this self assembly process, with each wire measuring only 10 nm in width, but extending to a length of 50 microns - a length 5,000 times greater than its width.

Project team leader Dr. Jillian Buriak described the importance of this as "a solution to a real world problem of how to integrate existing chip technology and future nano-electronic components. "

####

About National Institute for Nanotechnology, National Research Council (NRC)
The National Institute for Nanotechnology (NINT) is an integrated, multi-disciplinary institution involving researchers in physics, chemistry, engineering, biology, informatics, pharmacy and medicine. Established in 2001, it is operated as a partnership between the National Research Council and the University of Alberta, and is jointly funded by the Government of Canada, the Government of Alberta and the university.

NINT researchers are focused on the revolutionary work being done at the nano-scale, the world of individual atoms or molecules. The main focus of nanotechnology research is the integration of nano-scale devices and materials into complex nanosystems that are connected to the outside world. The long-term objective is to discover 'design rules' for nanotechnology, and develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application.

For more information, please click here

Contacts:
Shannon Jones
Communications
National Institute for Nanotechnology
(780) 641-1626

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Self Assembly

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project