Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Conductive Nano-wires Created Using Self-assembly on Silicon Chips

Abstract:
A team of researchers from Canada have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. Process can produce nano-wires that are 5,000 times longer than they are wide.

Conductive Nano-wires Created Using Self-assembly on Silicon Chips

Canada | Posted on August 2nd, 2007

A team of researchers from the National Research Council and the University of Albert at the National Institute for Nanotechnology(NINT) have demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. This meets the need for connecting ever smaller transistors and other electronic components in a way that allows the user to control the composition, structure and placement of the nano-wire. Since it is also compatible with existing silicon-based fabrication techniques, it has significant potential for commercial applications. The process is described in a paper title "Assembly of aligned linear metallic patterns on silicon" published in the August 2, 2007 issue of Nature Nanotechnology and is available on-line at http://www.nature.com/nnano/index.html

The first step in the process is to facilitate the assembly of a class of polymers, called block co-polymers, within micron-scale lithographically-defined channels on the silicon surface. The block co-polymers spontaneously self-assemble into lines as narrow as 10 nanometres in diameter. These structures are then loaded with the desired metal ion in water, and the block co-polymers are removed by a plasma treatment, leaving behind the nano-wires. The resulting wires are conductive and can be created in a variety of shapes and lengths.

In one example, 25 parallel platinum nano-wires were made using this self assembly process, with each wire measuring only 10 nm in width, but extending to a length of 50 microns - a length 5,000 times greater than its width.

Project team leader Dr. Jillian Buriak described the importance of this as "a solution to a real world problem of how to integrate existing chip technology and future nano-electronic components. "

####

About National Institute for Nanotechnology, National Research Council (NRC)
The National Institute for Nanotechnology (NINT) is an integrated, multi-disciplinary institution involving researchers in physics, chemistry, engineering, biology, informatics, pharmacy and medicine. Established in 2001, it is operated as a partnership between the National Research Council and the University of Alberta, and is jointly funded by the Government of Canada, the Government of Alberta and the university.

NINT researchers are focused on the revolutionary work being done at the nano-scale, the world of individual atoms or molecules. The main focus of nanotechnology research is the integration of nano-scale devices and materials into complex nanosystems that are connected to the outside world. The long-term objective is to discover 'design rules' for nanotechnology, and develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application.

For more information, please click here

Contacts:
Shannon Jones
Communications
National Institute for Nanotechnology
(780) 641-1626

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoelectronics

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE