Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Military to study better pain relief in battle zones

Abstract:
University of Michigan scientists win $1.3M grant to create and test nanoparticles that may deliver morphine to wounded soldiers faster and more safely

Military to study better pain relief in battle zones

ANN ARBOR, MI | Posted on July 30th, 2007

University of Michigan scientists have received a pilot grant of nearly $1.3 million from the Defense Advanced Research Projects Agency to test whether nanoparticles can solve a pressing problem in battle zones like Iraq: how to administer sustained, safe doses of the most effective painkillers to injured soldiers, long before they can reach expert medical help.

The ultimate goal is to develop tiny drug-bearing particles that a fellow soldier "or perhaps the injured soldier himself" could inject with a pen-like device, even in the heat of combat. That would solve one of the challenges now. Morphine, an effective painkiller that the military commonly uses for the acute pain of battle injuries, currently needs to be injected by skilled medical personnel and has to be monitored carefully to control its troublesome tendency to suppress normal breathing.

"This proposal provides an approach to achieve sustained, safe pain control on the battlefield," says the U-M research team's leader, James R. Baker, Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences.

"It uses different medicines coupled to polymers to release drugs and antidotes to provide adequate pain relief while avoiding complications. If successful, it could markedly improve the treatment of soldiers in the field," says Baker, the Ruth Dow Doan Professor of Internal Medicine in the U-M Medical School.

The work could have a broad impact. In the war in Iraq, more than 26,900 U.S. soldiers have been wounded in action as of late July. It's known that battlefield pain, if not relieved adequately, can lead to post-traumatic stress disorders.

A large multidisciplinary team of U-M scientists will use the grant to design multipurpose nanoparticles and test how well they perform several tasks under simulated physiological conditions in the laboratory. Ultimately, they want the particles to be able to:

* control the release of morphine over extended periods before a soldier can be evacuated to a military acute care facility,

* continuously monitor the soldier�s breathing and if needed, release a drug called Naloxone that is used to counter morphine�s effects on breathing.

The team, which includes synthetic, analytical and medicinal chemists, will expand on the use of dendrimer platforms, a technology previously developed at the U-M. They will design ultra-small polymer particles called dendrimers capable of carrying morphine and Naloxone into the body and releasing them in controlled amounts. They will develop sensors that the dendrimers will also carry to monitor a soldier's respiration and trigger Naloxone release, or halt it, as needed.

If the concept proves successful after the first year of in vitro studies, Baker and his team want to apply for continued DARPA funding to proceed with animal and eventually human studies.

Other U-M team members include Abraham F. L. Vanderspek, M.D., associate professor of anesthesiology; Brent Ward, MD, DDS, FACS, assistant professor of oral and maxillofacial surgery and program director of Oncologic Maxillofacial/Head & Neck Surgery; Xue-min Cheng, Ph.D., research associate professor, Department of Internal Medicine and M-NiMBS; a medicinal chemist, Rameshwer Shukla, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a medicinal chemist, Xiangyang Shi, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a polymer chemist, Baohua Huang, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a polymer chemist, Xiangdong Bi, Ph.D., Department of Internal Medicine and M-NiMBS; an organic chemist, Mark M. Banaszak Holl, Ph.D., professor of chemistry, applied physics and biophysics in the U-M College of Literature, Science, and the Arts, and of macromolecular science and engineering in the U-M College of Engineering; Ankur Desai, M.S., Department of Internal Medicine and M-NiMBS; an analytical chemist, Thommey P. Thomas, Ph.D., research assistant professor, Department of Internal Medicine and M-NiMBS; Bradford G. Orr, Ph.D., professor of physics in LS&A, director of the Academic Program in Applied Physics, and associate director of M-NiMBS; Alina Kotlyar, M.S., Department of Internal Medicine and M-NiMBS; and Thomas Dunham, B.S., of U-M Maxillofacial Surgery.

For more information on the U-M Nanotechnology Institute for Medicine and Biological Sciences, visit http://www.nano.med.umich.edu/

Funding for the study comes from the Defense Advanced Research Projects Agency, part of the U.S. Department of Defense.

Patent applications have been filed on related U-M dendrimer inventions, which have been exclusively licensed to Avidimer Therapeutics, an Ann Arbor based biotech company in which Dr. Baker has a financial interest.

####

About University of Michigan Health System
We are among the country's top institutions in federally funded research. We are prominent in the pursuit of discovery, in the translation of pioneering breakthroughs to the clinical and business settings, and in the dissemination of new knowledge to health care providers and the public at large.

For more information, please click here

Contacts:
Anne Rueter

734-764-2220

Copyright © University of Michigan Health System

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project