Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Military to study better pain relief in battle zones

Abstract:
University of Michigan scientists win $1.3M grant to create and test nanoparticles that may deliver morphine to wounded soldiers faster and more safely

Military to study better pain relief in battle zones

ANN ARBOR, MI | Posted on July 30th, 2007

University of Michigan scientists have received a pilot grant of nearly $1.3 million from the Defense Advanced Research Projects Agency to test whether nanoparticles can solve a pressing problem in battle zones like Iraq: how to administer sustained, safe doses of the most effective painkillers to injured soldiers, long before they can reach expert medical help.

The ultimate goal is to develop tiny drug-bearing particles that a fellow soldier "or perhaps the injured soldier himself" could inject with a pen-like device, even in the heat of combat. That would solve one of the challenges now. Morphine, an effective painkiller that the military commonly uses for the acute pain of battle injuries, currently needs to be injected by skilled medical personnel and has to be monitored carefully to control its troublesome tendency to suppress normal breathing.

"This proposal provides an approach to achieve sustained, safe pain control on the battlefield," says the U-M research team's leader, James R. Baker, Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences.

"It uses different medicines coupled to polymers to release drugs and antidotes to provide adequate pain relief while avoiding complications. If successful, it could markedly improve the treatment of soldiers in the field," says Baker, the Ruth Dow Doan Professor of Internal Medicine in the U-M Medical School.

The work could have a broad impact. In the war in Iraq, more than 26,900 U.S. soldiers have been wounded in action as of late July. It's known that battlefield pain, if not relieved adequately, can lead to post-traumatic stress disorders.

A large multidisciplinary team of U-M scientists will use the grant to design multipurpose nanoparticles and test how well they perform several tasks under simulated physiological conditions in the laboratory. Ultimately, they want the particles to be able to:

* control the release of morphine over extended periods before a soldier can be evacuated to a military acute care facility,

* continuously monitor the soldier�s breathing and if needed, release a drug called Naloxone that is used to counter morphine�s effects on breathing.

The team, which includes synthetic, analytical and medicinal chemists, will expand on the use of dendrimer platforms, a technology previously developed at the U-M. They will design ultra-small polymer particles called dendrimers capable of carrying morphine and Naloxone into the body and releasing them in controlled amounts. They will develop sensors that the dendrimers will also carry to monitor a soldier's respiration and trigger Naloxone release, or halt it, as needed.

If the concept proves successful after the first year of in vitro studies, Baker and his team want to apply for continued DARPA funding to proceed with animal and eventually human studies.

Other U-M team members include Abraham F. L. Vanderspek, M.D., associate professor of anesthesiology; Brent Ward, MD, DDS, FACS, assistant professor of oral and maxillofacial surgery and program director of Oncologic Maxillofacial/Head & Neck Surgery; Xue-min Cheng, Ph.D., research associate professor, Department of Internal Medicine and M-NiMBS; a medicinal chemist, Rameshwer Shukla, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a medicinal chemist, Xiangyang Shi, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a polymer chemist, Baohua Huang, Ph.D., who is a research investigator in the Department of Internal Medicine and M-NiMBS; a polymer chemist, Xiangdong Bi, Ph.D., Department of Internal Medicine and M-NiMBS; an organic chemist, Mark M. Banaszak Holl, Ph.D., professor of chemistry, applied physics and biophysics in the U-M College of Literature, Science, and the Arts, and of macromolecular science and engineering in the U-M College of Engineering; Ankur Desai, M.S., Department of Internal Medicine and M-NiMBS; an analytical chemist, Thommey P. Thomas, Ph.D., research assistant professor, Department of Internal Medicine and M-NiMBS; Bradford G. Orr, Ph.D., professor of physics in LS&A, director of the Academic Program in Applied Physics, and associate director of M-NiMBS; Alina Kotlyar, M.S., Department of Internal Medicine and M-NiMBS; and Thomas Dunham, B.S., of U-M Maxillofacial Surgery.

For more information on the U-M Nanotechnology Institute for Medicine and Biological Sciences, visit http://www.nano.med.umich.edu/

Funding for the study comes from the Defense Advanced Research Projects Agency, part of the U.S. Department of Defense.

Patent applications have been filed on related U-M dendrimer inventions, which have been exclusively licensed to Avidimer Therapeutics, an Ann Arbor based biotech company in which Dr. Baker has a financial interest.

####

About University of Michigan Health System
We are among the country's top institutions in federally funded research. We are prominent in the pursuit of discovery, in the translation of pioneering breakthroughs to the clinical and business settings, and in the dissemination of new knowledge to health care providers and the public at large.

For more information, please click here

Contacts:
Anne Rueter

734-764-2220

Copyright © University of Michigan Health System

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Patents/IP/Tech Transfer/Licensing

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE