Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > New technique to 'see' and protect transplants successful in diabetic animal model

July 29th, 2007

New technique to 'see' and protect transplants successful in diabetic animal model

Abstract:
Researchers at Johns Hopkins have found a way to overcome a major stumbling block to developing successful insulin-cell transplants for people with type I diabetes.

Traditional transplant of the cells, accompanied by necessary immune-suppressing drugs, has had highly variable results, from well- to poorly tolerated. Part of the problem, the Hopkins researchers say, is an inability to track the cells—so-called pancreatic beta cells—once they're inside the body.

Now a new technique encapsulates the insulin-producing cells in magnetic capsules, using an FDA-approved iron compound with an off-label use, which can be tracked by magnetic resonance imaging (MRI). The product, tested in swine and diabetic mice, also simultaneously avoids rejection by the immune system, likely a major reason for transplant failure. The work will be published online next week in Nature Medicine.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Announcements

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic