Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Unidym’s “Tiniest Carbon Wires” are Making a Big Impact

Abstract:
Carbon Nanotubes May Be Small, But Soon Everyone Will Clearly See How Useful and Cost-Effective They Can Be.

Unidym’s “Tiniest Carbon Wires” are Making a Big Impact

MENLO PARK, CA | Posted on July 26th, 2007

It's made from carbon and it's one atom thick. It has a diameter of about a nanometer - approximately 50,000 times as small as the width of a human hair, and the same diameter as that of DNA. It's about to make big waves in the electronics industry and beyond. It's a carbon nanotube. Yes, carbon. And yes - it is an incredibly small wire. Hence, carbon for electronics is a very big deal.

Replacing inorganic materials
Electronics as we know them are based on inorganic materials: copper, silicon or the transparent electronic material called indium-tin-oxide (ITO). Devices incorporating these materials are made through high temperature processes in multi-billion dollar facilities. In contrast, Unidym builds networks or films of nano-scale wires called carbon nanotubes (CNTs) using a simple and inexpensive solution-based process, much like printing a newspaper. Such films, which can be made to mimic the properties of metals or silicon, lie at the heart of the products being developed by the company. Some applications of this technology can be used here and now, others will usher in what is being referred to as a new paradigm of electronics, involving printed, plastic or large-area macro-electronics.

Small wire, big potential
Unidym is pioneering technology that is using films of CNTs to produce components for high-performance, cost-effective electronic products. The company holds full patent coverage for CNTs, which boast electrical conductivity comparable to that of metals, surpassing that of any polymer by several orders of magnitude, and able to carry significantly more current than the best metals. CNTs are also physically flexible, do not react with most chemicals and resist abrasion or damage from day-to-day use. Their excellent electrical, optical and mechanical properties and the abundance of carbon make them a highly promising material for many current and future applications.

Products made simpler, cheaper
Unidym's product line builds upon the growing trend in the electronics industry to replace today's expensive materials and manufacturing processes with simpler, lower-cost production techniques similar to those found in the printing industry. Films of CNTs, called nanonets, serve as an electronically conductive medium for a variety of applications where optically transparent films are essential. The films offer competitive alternatives to ITO in a variety of applications. What's more, while ITO requires deposition methods that are largely based on high temperature processes that are incompatible with a large variety of substrates, Unidym's films are made a room temperature and are fully compatible with plastics and other materials.

Exciting application potential
Unidym's highly transparent and electrically conducting films offer significant benefits for a wide variety of applications:
Touch screens are in greater demand and require increasing durability and optical clarity. Networks of carbon nanotubes have the required transparency, electrical attributes and incredible flexibility and robustness to ensure devices with long lifetimes
Solar cells Inexpensive, large-area fabrication techniques will make Unidym's material architecture particularly relevant to thin film and organic solar cells
Flat panel displays require highly transparent conductors with low electrical resistance
Light emitting diodes and solid-state lighting such as organic or polymer-based light sources require transparent electrodes made from CNTs for energy efficiency

Products for the future
Films which are tailor-made to resemble silicon serve as the backbone of novel printable or flexible electronics. The new paradigm on which these products are based involves replacing expensive starting materials and complex semiconductor manufacturing processes with low-cost solution-based deposition techniques like ink jet printing and roll-to-roll coating. Unidym is developing active electronic devices utilizing the company's platform technology. Electronic magazines, displays that roll up and radio frequency identification (RFID) tags top the list of potential applications of the technology.

Growing market

In all, the market for transparent conductive films and coatings exceeds $1 billion per year and is growing between 15% and 25% annually. Independent experts forecast the opportunity to grow to $30 billion by 2015, and to as much as $250 million by 2025.

####

About Unidym
Unidym is a nanotechnology company that produces high-performance, cost-effective products for the electronics industry. The company possesses patented technologies and industry-leading capabilities in the synthesis and application of carbon nanotubes (CNTs), a nanostructured form of the highly abundant element. Through its recent merger with Carbon Nanotechnologies, Inc. (CNI), Unidym has created one of the most expansive intellectual property portfolios in the CNT industry, with foundational patents covering nearly every aspect of CNTs. Although Unidym is currently focused on the CNT electronics industry, its patent portfolio broadly covers many other promising CNT applications, ranging from structural composites to sensors to therapeutics.

For more information, please click here

Contacts:
Heather Kelly
S&S Public Relations
719-634-8274

Copyright © Unidym

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Solar/Photovoltaic

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE