Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Unidym’s “Tiniest Carbon Wires” are Making a Big Impact

Abstract:
Carbon Nanotubes May Be Small, But Soon Everyone Will Clearly See How Useful and Cost-Effective They Can Be.

Unidym’s “Tiniest Carbon Wires” are Making a Big Impact

MENLO PARK, CA | Posted on July 26th, 2007

It's made from carbon and it's one atom thick. It has a diameter of about a nanometer - approximately 50,000 times as small as the width of a human hair, and the same diameter as that of DNA. It's about to make big waves in the electronics industry and beyond. It's a carbon nanotube. Yes, carbon. And yes - it is an incredibly small wire. Hence, carbon for electronics is a very big deal.

Replacing inorganic materials
Electronics as we know them are based on inorganic materials: copper, silicon or the transparent electronic material called indium-tin-oxide (ITO). Devices incorporating these materials are made through high temperature processes in multi-billion dollar facilities. In contrast, Unidym builds networks or films of nano-scale wires called carbon nanotubes (CNTs) using a simple and inexpensive solution-based process, much like printing a newspaper. Such films, which can be made to mimic the properties of metals or silicon, lie at the heart of the products being developed by the company. Some applications of this technology can be used here and now, others will usher in what is being referred to as a new paradigm of electronics, involving printed, plastic or large-area macro-electronics.

Small wire, big potential
Unidym is pioneering technology that is using films of CNTs to produce components for high-performance, cost-effective electronic products. The company holds full patent coverage for CNTs, which boast electrical conductivity comparable to that of metals, surpassing that of any polymer by several orders of magnitude, and able to carry significantly more current than the best metals. CNTs are also physically flexible, do not react with most chemicals and resist abrasion or damage from day-to-day use. Their excellent electrical, optical and mechanical properties and the abundance of carbon make them a highly promising material for many current and future applications.

Products made simpler, cheaper
Unidym's product line builds upon the growing trend in the electronics industry to replace today's expensive materials and manufacturing processes with simpler, lower-cost production techniques similar to those found in the printing industry. Films of CNTs, called nanonets, serve as an electronically conductive medium for a variety of applications where optically transparent films are essential. The films offer competitive alternatives to ITO in a variety of applications. What's more, while ITO requires deposition methods that are largely based on high temperature processes that are incompatible with a large variety of substrates, Unidym's films are made a room temperature and are fully compatible with plastics and other materials.

Exciting application potential
Unidym's highly transparent and electrically conducting films offer significant benefits for a wide variety of applications:
Touch screens are in greater demand and require increasing durability and optical clarity. Networks of carbon nanotubes have the required transparency, electrical attributes and incredible flexibility and robustness to ensure devices with long lifetimes
Solar cells Inexpensive, large-area fabrication techniques will make Unidym's material architecture particularly relevant to thin film and organic solar cells
Flat panel displays require highly transparent conductors with low electrical resistance
Light emitting diodes and solid-state lighting such as organic or polymer-based light sources require transparent electrodes made from CNTs for energy efficiency

Products for the future
Films which are tailor-made to resemble silicon serve as the backbone of novel printable or flexible electronics. The new paradigm on which these products are based involves replacing expensive starting materials and complex semiconductor manufacturing processes with low-cost solution-based deposition techniques like ink jet printing and roll-to-roll coating. Unidym is developing active electronic devices utilizing the company's platform technology. Electronic magazines, displays that roll up and radio frequency identification (RFID) tags top the list of potential applications of the technology.

Growing market

In all, the market for transparent conductive films and coatings exceeds $1 billion per year and is growing between 15% and 25% annually. Independent experts forecast the opportunity to grow to $30 billion by 2015, and to as much as $250 million by 2025.

####

About Unidym
Unidym is a nanotechnology company that produces high-performance, cost-effective products for the electronics industry. The company possesses patented technologies and industry-leading capabilities in the synthesis and application of carbon nanotubes (CNTs), a nanostructured form of the highly abundant element. Through its recent merger with Carbon Nanotechnologies, Inc. (CNI), Unidym has created one of the most expansive intellectual property portfolios in the CNT industry, with foundational patents covering nearly every aspect of CNTs. Although Unidym is currently focused on the CNT electronics industry, its patent portfolio broadly covers many other promising CNT applications, ranging from structural composites to sensors to therapeutics.

For more information, please click here

Contacts:
Heather Kelly
S&S Public Relations
719-634-8274

Copyright © Unidym

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Aledia’s Nanowire LED Technology Endorsed By 2014 Physics Nobel Prize Winner: Hiroshi Amano Serves on Company’s Scientific Advisory Board October 13th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Solar/Photovoltaic

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE