Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A new technique may speed the development of molecular electronics

Abstract:
Often, things can be improved by a little 'contamination.' Steel, for example is iron with a bit of carbon mixed in. To produce materials for modern electronics, small amounts of impurities are introduced into silicon - a process called doping. It is these impurities that enable electricity to flow through the semiconductor and allow designers to control the electronic properties of the material.

A new technique may speed the development of molecular electronics

Israel | Posted on July 25th, 2007

Scientists at the Weizmann Institute of Science, together with colleagues from the U.S.A., recently succeeded in being the first to implement doping in the field of molecular electronics - the development of electronic components made of single layers of organic (carbon-based) molecules. Such components might be inexpensive, biodegradable, versatile and easy to manipulate. The main problem with molecular electronics, however, is that the organic materials must first be made sufficiently pure and then, ways must be found to successfully dope these somewhat delicate systems.

This is what Prof. David Cahen and postdoctoral fellow Dr. Oliver Seitz of the Weizmann Institute's Material and Interfaces Department, together with Drs. Ayelet Vilan and Hagai Cohen from the Chemical Research Support Unit and Prof. Antoine Kahn from Princeton University did. They showed that such 'contamination' is indeed possible, after they succeeded in purifying the molecular layer to such an extent that the remaining impurities did not affect the system's electrical behavior.

The scientists doped the 'clean' monolayers by irradiating the surface with UV light or weak electron beams, changing chemical bonds between the carbon atoms that make up the molecular layer. These bonds ultimately influenced electronic transport through the molecules.

This achievement was recently described in the Journal of the American Chemical Society (JACS). The researchers foresee that this method may enable scientists and electronics engineers to substantially broaden the use of these organic monolayers in the field of nanoelectronics. Dr. Seitz: 'If I am permitted to dream a little, it could be that this method will allow us to create types of electronics that are different, and maybe even more environmentally friendly, than the standard ones that are available today.'

Prof. David Cahen's research is supported by the Nancy and Stephen Grand Research Center for Sensors and Security; the Philip M. Klutznick Fund for Research; Mr. Yehuda Bronicki, Israel; Mr. and Mrs. Yossie Hollander, Israel; and the Wolfson Family Charitable Trust. Prof. Cahen is the incumbent of the Rowland Schaefer Professorial Chair in Energy Research.

####

About Weizmann Institute of Science
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Contacts:
Publications and Media Relations Department
Phone : 972-8-9343856 / 52
Fax : 972-8-9344132
E-Mail :

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nanoelectronics

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project