Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists Discover New Way to Study Nanostructures

Atomic-scale mechanical motions in nanowires can be excited by high-frequency alternating superconducting Josephson currents. In niobium dimer nanowires three vibrational modes were experimentally observed and identified through first-principles theoretical calculations. At top is a curve of the measured conductance plotted versus applied voltage showing a sequence of peaks corresponding to vibrational modes of the dimer of niobium atoms suspended between the left and right tip-electrodes, as depicted in the atomic configuration shown in the middle. (Image: Georgia Tech/Alexei Marchenkov and Uzi Landman)
Atomic-scale mechanical motions in nanowires can be excited by high-frequency alternating superconducting Josephson currents. In niobium dimer nanowires three vibrational modes were experimentally observed and identified through first-principles theoretical calculations. At top is a curve of the measured conductance plotted versus applied voltage showing a sequence of peaks corresponding to vibrational modes of the dimer of niobium atoms suspended between the left and right tip-electrodes, as depicted in the atomic configuration shown in the middle. (Image: Georgia Tech/Alexei Marchenkov and Uzi Landman)

Abstract:
Scientists at the Georgia Institute of Technology have discovered a phenomenon which allows measurement of the mechanical motion of nanostructures by using the AC Josephson effect. The findings, which may be used to identify and characterize structural and mechanical properties of nanoparticles, including materials of biological interest, appear online in the journal Nature Nanotechnology.

Scientists Discover New Way to Study Nanostructures

Atlanta, GA | Posted on July 24th, 2007

The AC Josephson effect refers to work that Brian Josephson published in 1962 regarding the flow of an electrical current between superconductors. In this work, for which he shared a 1973 Nobel Prize, Josephson predicted that when a constant voltage difference is maintained across two weakly linked superconductors separated by a thin insulating barrier (an arrangement now known as a Josephson junction), an alternating electrical current would flow through the junction (imagine turning on a water faucet and having the water start flowing up as well as down once it leaves the spigot). The frequency of the current oscillations is directly related to the applied voltage.

These predictions were fully confirmed by an immense number of experiments, and the standard volt is now defined in terms of the frequency of the Josephson AC current. The Josephson effect has numerous applications in physics, computing and sensing technologies. It can be used for ultra high sensitive detection of electromagnetic radiation, extremely weak magnetic fields and in superconducting quantum computing bits.

Now, experimental physicist Alexei Marchenkov and theoretician Uzi Landman at Georgia Tech have discovered that the AC Josephson effect can be used to detect mechanical motion of atoms placed in the Josephson junction.

"We show here that in addition to being able to detect the effects of electromagnetic radiation on the AC Josephson current, one can also use it to probe mechanical motions of atoms or molecules placed in the junction," said Landman, director of the Center for Computational Materials Science, Regents and Institute professor, and Callaway
Chair of Physics at Georgia Tech. "The prospect of being able to explore, and perhaps utilize, atomic-scale phenomena using this effect is very exciting."

In January 2007, Marchenkov and Landman published a paper in Physical Review Letters detailing their discovery that fluctuations in the conductance of ultra-thin niobium nanowires are caused by a pair of atoms, known as a dimer, shuttling back and forth between the bulk electrical leads.

In this latest research, Marchenkov and Landman, along with their collaborators Zhenting Dai, Brandon Donehoo and Robert Barnett, report that when a microfabricated junction assembly is held below its superconducting transition temperature, unusual features are found in traces of the electrical conductance measured as a function of the applied voltage.

"In our experiments, only nanowires - which we know now to contain a single dimer have consistently shown a series of additional peaks in the conductance versus voltage curves. Since a peak in such measurements signifies a resonance and knowing that we have intrinsic high-frequency Josephson current oscillations, we started looking into the possible physical mechanisms," said Marchenkov, assistant professor in the School of Physics.

The team hypothesized that the new measured peaks likely originate from mechanical motions of the dimer, which causes enhancement of the electrical current at particular values of the applied voltage. At each of the peak voltages, the frequency of the AC Josephson current would resonate with the vibrational frequency of the nanostructure in the junction.

Subsequent first principles calculations by Landman's team predicted that such peaks would occur at three different frequencies, or voltages, and their integer multiples. One corresponds to a back and forth vibration of the dimer suspended between the two niobium electrode tips, a second corresponds to motion in the direction perpendicular to the axis connecting the two tips, and the remaining corresponds to a wagging, or rocking, vibration of the dimer about the inter-tip axis. Ensuing targeted experiments demonstrated that the resonance peaks disappear gradually as one approaches the superconducting transition temperature from below, while their positions do not change. These observations, exhaustive qualitative and quantitative agreement between experimental measurements and theoretical predictions confirm that vibrational motions of the nanowire atoms are indeed the cause for the newly observed conductance peaks.

Marchenkov and Landman plan to further explore vibrational effects in weak link junctions, using the information obtained through these studies for determining vibrational characteristics, atomic arrangements, and transport mechanisms in metallic,
organic and biomolecular nanostructures.

"One of our aims is the development of devices and sensing methodologies that utilize the insights gained from our research," said Landman.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
David Terraso
Institute Communications & Public Affairs

404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Uzi Landman

Alexei Marchenkov

Related News Press

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE