Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-Assembling Nanoparticles Image Tumor Cells

Abstract:
By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that assemble themselves layer by layer. These nanoparticles, which contain two different types of imaging agents, also contain a peptide coating that targets tumor cells.

Self-Assembling Nanoparticles Image Tumor Cells

Bethesda , MD | Posted on July 23rd, 2007

Wenbin Lin, Ph.D., of The University of North Carolina at Chapel Hill, led the research effort to develop a relatively simple and versatile strategy for creating multifunctional nanoparticles capable of targeting specific types of cells. The investigators turned to a strategy known as layer-by-layer self-assembly, in which the various charged chemical components of a nanoparticle put themselves together in such a way that maximizes the interaction of positive and negative charges. The mild chemical environment required to trigger layer-by-layer assembly enabled the researchers to create multifunctional nanoparticles without worrying about damaging the targeting and imaging molecules they wanted to incorporate in the nanoparticles.

In the current work, Lin and colleagues created a silica-based nanoparticle containing a fluorescent dye and a magnetic resonance imaging (MRI) contrast agent. The researchers added a tumor-targeting targeting peptide, known as RGD, to the nanoparticle's surface. Tests with the resulting nanoparticle showed that the nanoparticles were capable of distinguishing between human colon cancer cells and normal cells. In contrast, nanoparticles coated with a peptide that does not bind cancer cells did not show this type of cell specificity. The investigators were able to monitor nanoparticle uptake by both fluorescent imaging and MRI.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper "Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of eliminating suffering and death due to cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Nanomedicine

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Discoveries

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Announcements

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project