Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-Assembling Nanoparticles Image Tumor Cells

Abstract:
By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that assemble themselves layer by layer. These nanoparticles, which contain two different types of imaging agents, also contain a peptide coating that targets tumor cells.

Self-Assembling Nanoparticles Image Tumor Cells

Bethesda , MD | Posted on July 23rd, 2007

Wenbin Lin, Ph.D., of The University of North Carolina at Chapel Hill, led the research effort to develop a relatively simple and versatile strategy for creating multifunctional nanoparticles capable of targeting specific types of cells. The investigators turned to a strategy known as layer-by-layer self-assembly, in which the various charged chemical components of a nanoparticle put themselves together in such a way that maximizes the interaction of positive and negative charges. The mild chemical environment required to trigger layer-by-layer assembly enabled the researchers to create multifunctional nanoparticles without worrying about damaging the targeting and imaging molecules they wanted to incorporate in the nanoparticles.

In the current work, Lin and colleagues created a silica-based nanoparticle containing a fluorescent dye and a magnetic resonance imaging (MRI) contrast agent. The researchers added a tumor-targeting targeting peptide, known as RGD, to the nanoparticle's surface. Tests with the resulting nanoparticle showed that the nanoparticles were capable of distinguishing between human colon cancer cells and normal cells. In contrast, nanoparticles coated with a peptide that does not bind cancer cells did not show this type of cell specificity. The investigators were able to monitor nanoparticle uptake by both fluorescent imaging and MRI.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper "Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of eliminating suffering and death due to cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todayís explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Announcements

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The School of Materials at the University of Manchester utilise Debenís mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project