Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-Assembling Nanoparticles Image Tumor Cells

Abstract:
By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that assemble themselves layer by layer. These nanoparticles, which contain two different types of imaging agents, also contain a peptide coating that targets tumor cells.

Self-Assembling Nanoparticles Image Tumor Cells

Bethesda , MD | Posted on July 23rd, 2007

Wenbin Lin, Ph.D., of The University of North Carolina at Chapel Hill, led the research effort to develop a relatively simple and versatile strategy for creating multifunctional nanoparticles capable of targeting specific types of cells. The investigators turned to a strategy known as layer-by-layer self-assembly, in which the various charged chemical components of a nanoparticle put themselves together in such a way that maximizes the interaction of positive and negative charges. The mild chemical environment required to trigger layer-by-layer assembly enabled the researchers to create multifunctional nanoparticles without worrying about damaging the targeting and imaging molecules they wanted to incorporate in the nanoparticles.

In the current work, Lin and colleagues created a silica-based nanoparticle containing a fluorescent dye and a magnetic resonance imaging (MRI) contrast agent. The researchers added a tumor-targeting targeting peptide, known as RGD, to the nanoparticle's surface. Tests with the resulting nanoparticle showed that the nanoparticles were capable of distinguishing between human colon cancer cells and normal cells. In contrast, nanoparticles coated with a peptide that does not bind cancer cells did not show this type of cell specificity. The investigators were able to monitor nanoparticle uptake by both fluorescent imaging and MRI.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper "Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of eliminating suffering and death due to cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Nanomedicine

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Discoveries

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE