Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Point-of-Care Diagnostics

Abstract:
Integrated with "smart" fabrics, biosensors will monitor respiration rate and body temperature in real time.

Point-of-Care Diagnostics

FAYETTEVILLE, AR | Posted on July 21st, 2007

Working with an organic semiconductor, electrical-engineering researchers at the University of Arkansas have fabricated and tested two similar but slightly different biosensors that can measure important physiological signs. Integrated into "smart" fabrics - garments with wireless technology - the sensors will be able to monitor a patient's respiration rate and body temperature in real time and thus provide point-of-care diagnostics to health-care professionals and greater freedom for patients.

"We're trying to move diagnostic testing out of the laboratory and directly to the patient," said Taeksoo Ji, assistant professor of electrical engineering. "Although there has been some success at this effort over the past decade, traditional materials are not suitable for manufacturing low-cost, large-area sensor devices. The advantages of organic semiconductors will allow manufacturers to produce devices that are light, flexible and easily integrated into biomedical applications such as smart vests and fabrics."

The researchers - Ji and Soyoun Jung, a graduate student in electrical engineering, under the direction of Vijay Varadan, Distinguished Professor of electrical engineering - worked with pentacene, a hydrocarbon molecule, and carbon nanotubes to develop the two types of sensors - a temperature sensor and a strain sensor. The addition of carbon nanotubes with pentacene increases sensor sensitivity. As an organic semiconductor, pentacene is efficient and easy to control. Both sensors were fabricated directly on flexible polymeric substrates.

The strain sensor, which would monitor respiration rate, consisted of a Wheatstone bridge, an instrument that measures unknown electrical resistance, and a thin pentacene film that acted as a sensing layer. The system would work when a physiological strain, such as breathing, creates a mechanical deformation of the sensor, which then affects the electrical current's resistance. The researchers found that the smaller the sensor, the more sensitive it was to current variations.

For the temperature sensor, the researchers used what is known as a thin-film transistor, which is a special kind of transistor that deposits thin film semiconductors on substrates. The thin-film transistor helped the researchers observe electrical current in linear response to temperature change. Most importantly, in low voltage areas, the current displayed the highest sensitivity to temperature changes.

The success of the research is promising for patients whose vital signs must be continuously monitored. Varadan said the sensors and wireless networks can fit on garments such as undershirts. With this technology, the smart fabric can monitor vital signs and collect and send data to an information hub in real time. The information can provide immediate detection of physiological abnormalities, which will allow physicians to begin treatment or prevent illness before problems reach an acute stage.

The research was done in the Organic Electronics and Devices Laboratory, which is part of the College of Engineering's Center for Nano-, Bio-, and Info-Technology Sensors and Systems. Varadan is director of the center.

Varadan holds the College of Engineering's Twenty-First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college's Chair in Microelectronics and High Density Electronics. In addition to his position director of the above center, he directs the university's High Density Electronics Center. Varadan is also a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences.

####

For more information, please click here

Contacts:
Taeksoo Ji
assistant professor
Department of Electrical Engineering
College of Engineering
(479) 575-3675


Vijay Varadan
distinguished professor
Department of Electrical Engineering
College of Engineering
(479) 575-2873


Soyoun Jung
graduate student
Department of Electrical Engineering
College of Engineering
(479) 575-3675


Matt McGowan
science and research communications officer
University Relations
(479) 575-4246


Leslie Lannutti
Director of Communications
College of Engineering

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs:Study published in Nature Communications details targeted nanomedicine therapy to regenerate heart muscle injured by heart attack September 11th, 2014

Sensors

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Announcements

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Textiles/Clothing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE