Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Point-of-Care Diagnostics

Abstract:
Integrated with "smart" fabrics, biosensors will monitor respiration rate and body temperature in real time.

Point-of-Care Diagnostics

FAYETTEVILLE, AR | Posted on July 21st, 2007

Working with an organic semiconductor, electrical-engineering researchers at the University of Arkansas have fabricated and tested two similar but slightly different biosensors that can measure important physiological signs. Integrated into "smart" fabrics - garments with wireless technology - the sensors will be able to monitor a patient's respiration rate and body temperature in real time and thus provide point-of-care diagnostics to health-care professionals and greater freedom for patients.

"We're trying to move diagnostic testing out of the laboratory and directly to the patient," said Taeksoo Ji, assistant professor of electrical engineering. "Although there has been some success at this effort over the past decade, traditional materials are not suitable for manufacturing low-cost, large-area sensor devices. The advantages of organic semiconductors will allow manufacturers to produce devices that are light, flexible and easily integrated into biomedical applications such as smart vests and fabrics."

The researchers - Ji and Soyoun Jung, a graduate student in electrical engineering, under the direction of Vijay Varadan, Distinguished Professor of electrical engineering - worked with pentacene, a hydrocarbon molecule, and carbon nanotubes to develop the two types of sensors - a temperature sensor and a strain sensor. The addition of carbon nanotubes with pentacene increases sensor sensitivity. As an organic semiconductor, pentacene is efficient and easy to control. Both sensors were fabricated directly on flexible polymeric substrates.

The strain sensor, which would monitor respiration rate, consisted of a Wheatstone bridge, an instrument that measures unknown electrical resistance, and a thin pentacene film that acted as a sensing layer. The system would work when a physiological strain, such as breathing, creates a mechanical deformation of the sensor, which then affects the electrical current's resistance. The researchers found that the smaller the sensor, the more sensitive it was to current variations.

For the temperature sensor, the researchers used what is known as a thin-film transistor, which is a special kind of transistor that deposits thin film semiconductors on substrates. The thin-film transistor helped the researchers observe electrical current in linear response to temperature change. Most importantly, in low voltage areas, the current displayed the highest sensitivity to temperature changes.

The success of the research is promising for patients whose vital signs must be continuously monitored. Varadan said the sensors and wireless networks can fit on garments such as undershirts. With this technology, the smart fabric can monitor vital signs and collect and send data to an information hub in real time. The information can provide immediate detection of physiological abnormalities, which will allow physicians to begin treatment or prevent illness before problems reach an acute stage.

The research was done in the Organic Electronics and Devices Laboratory, which is part of the College of Engineering's Center for Nano-, Bio-, and Info-Technology Sensors and Systems. Varadan is director of the center.

Varadan holds the College of Engineering's Twenty-First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college's Chair in Microelectronics and High Density Electronics. In addition to his position director of the above center, he directs the university's High Density Electronics Center. Varadan is also a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences.

####

For more information, please click here

Contacts:
Taeksoo Ji
assistant professor
Department of Electrical Engineering
College of Engineering
(479) 575-3675


Vijay Varadan
distinguished professor
Department of Electrical Engineering
College of Engineering
(479) 575-2873


Soyoun Jung
graduate student
Department of Electrical Engineering
College of Engineering
(479) 575-3675


Matt McGowan
science and research communications officer
University Relations
(479) 575-4246


Leslie Lannutti
Director of Communications
College of Engineering

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Textiles/Clothing

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor January 30th, 2016

Durability of Silver Nanoparticles in Production of Antibacterial Woolen Fabrics December 14th, 2015

Scientists see the light on microsupercapacitors: Rice University's laser-induced graphene makes simple, powerful energy storage possible December 3rd, 2015

Graphene-Coated Wearable 'E-Textile' Can Alert Wearer To Presence Of Dangerous Gases December 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic