Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nature's nanotechnology secrets yield new adhesive material

July 18th, 2007

Nature's nanotechnology secrets yield new adhesive material

Abstract:
Scientists report they have merged two of nature's most elegant strategies for wet and dry adhesion to produce a synthetic material that one day could lead to more durable and longer-lasting bandages, patches, and surgical materials. As published in this week's issue of the journal Nature, the scientists, supported by the National Institute of Dental and Craniofacial Research (NIDCR), part of the National Institutes of Health, have designed a synthetic material that starts with the dry adhesive properties of the gecko lizard and supplements it with the underwater adhesive properties of a mussel. The hybrid material, which they call a geckel nanoadhesive, proved in initial testing to be adherent under dry and wet conditions. It also adhered much longer under both extremes than previous gecko-based synthetic adhesives, a major issue in this area of research.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Materials/Metamaterials

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Dental

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tooth decay -- drilling down to the nanoscale: Researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behavior of our teeth September 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project