Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Pennsylvania engineers discover natural 'workbench' for nanoscale construction

Lattice image of a grain of composition fow which both chessboard and diamond contrast are apparent. The scale bars are 20nm.

Credit: University of Pennsylvania
Lattice image of a grain of composition fow which both chessboard and diamond contrast are apparent. The scale bars are 20nm. Credit: University of Pennsylvania

Abstract:
Engineers at the University of Pennsylvania have taken a step toward simplifying the creation of nanostructures by identifying the first inorganic material to phase separate with near-perfect order at the nanometer scale. The finding provides an atomically tuneable nanocomposite "workbench" that is cheap and easy to produce and provides a super-lattice foundation potentially suitable for building nanostructures.

University of Pennsylvania engineers discover natural 'workbench' for nanoscale construction

Philadelphia, PA | Posted on July 17th, 2007

The findings appear in the August issue of Nature Materials.

Alerted by an unusual diffraction effect of a common ceramic material, researchers used imaging to identify a two-phase structural pattern ideal as the first step towards nanodevice construction. Practical application of nanotechnology will rely upon engineering's ability to manipulate atoms and molecules into long-range order to produce materials with desired functionalities. The Penn findings provide a simpler method for the ordering of composite parts on the nanometer scale, which is integral to the incorporation of nano-objects such as particles and wires that make up nanodevices.

The material used in the Penn study is an ionically- conductive, crystalline ceramic (Nd2/3-xLi3x)TiO3 that engineers observed with transmission electron microscopy. The powdered perovskite exhibited two distinct patterns at the atomic scale with identical periodicity: a nanoscale chessboard pattern and a diamond pattern that indicated periodic separation into two phases within the structure. This spontaneous separation of phases could present a new foundation on which to build nanodevice technology. This material - made using standard and easily reproducible ceramic processing methods - represents the formation of a spontaneous microscopic surface controlled on the nanoscale with atomic precision.

Further study revealed that the separation of the structure into two distinct phases was a result of the oxide separating into lithium rich squares and lithium poor stripes. By varying the amount of lithium and neodymium, two ingredients in the ceramic powder, engineers controlled the length and spacing of the alternating phases, thereby tuning the workbench upon which nanodevices could be built.

On a larger-than-atomic scale, the research extends science's knowledge of the properties of a most common oxide structure type, currently used for superconducting materials, magnetoresistive materials and ferroelectrics.

"This study represents great potential for the use of standard ceramic processing methods for nanotechnology," said Peter K. Davies, chair of the Department of Materials Science and Engineering at Penn. "The phase separation occurs spontaneously, providing two phases whose dimensions both extend into the nanometer scale. This unique feature could lead to its application as a template for the assembly of nanostructures or molecular monolayers."

The research was performed by Davies and Beth S. Guiton of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science.

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Jordan Reese

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE