Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 248 nm Lithography to Reach 80 nm Resolution

Abstract:
Industry's Highest KrF NA Will Enable Chip Manufacturers to Reduce Cost of Ownership

248 nm Lithography to Reach 80 nm Resolution

OBERKOCHEN, Germany & SAN FRANCISCO, CA | Posted on July 17th, 2007

Carl Zeiss SMT AG announces at Semicon West 2007 its new lithography optical system Starlith® 1000 for KrF. The new system stands out with a numerical aperture (NA) of 0.93 which will be the highest NA for 248 nm exposure wavelength available in the market. This in turn provides a more cost effective solution for patterning of features down to 80 nm in volume chip production.

"Together with our strategic partner ASML we have investigated customer needs initiating the development of Starlith® 1000. This demonstrates our continuing efforts to offer solutions to the semiconductor industry for cost-effective and highly reliable lithography processes. With Starlith® 1000 the application range of KrF lithography is further extended", Winfried Kaiser points out. The Vice President Product Strategy at Carl Zeiss SMT´s Lithography Optics division continues: This development has only been possible due to our long experience in innovative lens design for lithography and leading-edge manufacturing facilities we have in place at our new production site in Oberkochen, Germany."

With Starlith® 1000 Carl Zeiss SMT now offers a complete product portfolio of leading-edge lithography optics for each of the most advanced exposure wavelenghts/technologies: @ 248 nm/KrF - the new Starlith® 1000; @ 193 nm/ArF dry - the Starlith® 1450 and @ 193 nm immersion/ArF immersion - the Starlith® 1900i.

The Starlith® 1000 system will be part of ASML´s new TWINSCAN™ XT:1000 which will begin shipping in 2008.

####

About Carl Zeiss SMT AG
Carl Zeiss SMT utilizes its globally leading know-how in light, electron and ion-optical technologies to offer its customers in the manufacturing industry and R&D a broad portfolio of products, services and application solutions. The market-leading systems and solutions from Carl Zeiss SMT are used in mutually strengthening fields of application in nanotechnology such as semiconductor technology, materials research and the life sciences. The global customer community is constantly growing. As the innovation leader for lithography optics, as well as optical and particle-beam based inspection, analysis and measuring systems, Carl Zeiss SMT opens up new avenues for its customers in industrial manufacturing environments, quality assurance and industrial and university R&D. Together with its subsidiaries in Germany, England, France and the USA, the international group of companies has approximately 2,400 employees. In fiscal year 2005/06, Carl Zeiss SMT AG generated revenues of over EUR 860 billion. Carl Zeiss SMT AG is a wholly owned subsidiary of Carl Zeiss AG.

For more information, please click here

Contacts:
Press:
Carl Zeiss SMT AG
Public Relations
Markus Wiederspahn, +49 7364 20-2194

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project