Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 248 nm Lithography to Reach 80 nm Resolution

Abstract:
Industry's Highest KrF NA Will Enable Chip Manufacturers to Reduce Cost of Ownership

248 nm Lithography to Reach 80 nm Resolution

OBERKOCHEN, Germany & SAN FRANCISCO, CA | Posted on July 17th, 2007

Carl Zeiss SMT AG announces at Semicon West 2007 its new lithography optical system Starlith® 1000 for KrF. The new system stands out with a numerical aperture (NA) of 0.93 which will be the highest NA for 248 nm exposure wavelength available in the market. This in turn provides a more cost effective solution for patterning of features down to 80 nm in volume chip production.

"Together with our strategic partner ASML we have investigated customer needs initiating the development of Starlith® 1000. This demonstrates our continuing efforts to offer solutions to the semiconductor industry for cost-effective and highly reliable lithography processes. With Starlith® 1000 the application range of KrF lithography is further extended", Winfried Kaiser points out. The Vice President Product Strategy at Carl Zeiss SMT´s Lithography Optics division continues: This development has only been possible due to our long experience in innovative lens design for lithography and leading-edge manufacturing facilities we have in place at our new production site in Oberkochen, Germany."

With Starlith® 1000 Carl Zeiss SMT now offers a complete product portfolio of leading-edge lithography optics for each of the most advanced exposure wavelenghts/technologies: @ 248 nm/KrF - the new Starlith® 1000; @ 193 nm/ArF dry - the Starlith® 1450 and @ 193 nm immersion/ArF immersion - the Starlith® 1900i.

The Starlith® 1000 system will be part of ASML´s new TWINSCAN™ XT:1000 which will begin shipping in 2008.

####

About Carl Zeiss SMT AG
Carl Zeiss SMT utilizes its globally leading know-how in light, electron and ion-optical technologies to offer its customers in the manufacturing industry and R&D a broad portfolio of products, services and application solutions. The market-leading systems and solutions from Carl Zeiss SMT are used in mutually strengthening fields of application in nanotechnology such as semiconductor technology, materials research and the life sciences. The global customer community is constantly growing. As the innovation leader for lithography optics, as well as optical and particle-beam based inspection, analysis and measuring systems, Carl Zeiss SMT opens up new avenues for its customers in industrial manufacturing environments, quality assurance and industrial and university R&D. Together with its subsidiaries in Germany, England, France and the USA, the international group of companies has approximately 2,400 employees. In fiscal year 2005/06, Carl Zeiss SMT AG generated revenues of over EUR 860 billion. Carl Zeiss SMT AG is a wholly owned subsidiary of Carl Zeiss AG.

For more information, please click here

Contacts:
Press:
Carl Zeiss SMT AG
Public Relations
Markus Wiederspahn, +49 7364 20-2194

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Tools

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Printing/Lithography/Inkjet/Inks

Nanoshaping method points to future manufacturing technology December 11th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE