Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 248 nm Lithography to Reach 80 nm Resolution

Abstract:
Industry's Highest KrF NA Will Enable Chip Manufacturers to Reduce Cost of Ownership

248 nm Lithography to Reach 80 nm Resolution

OBERKOCHEN, Germany & SAN FRANCISCO, CA | Posted on July 17th, 2007

Carl Zeiss SMT AG announces at Semicon West 2007 its new lithography optical system Starlith® 1000 for KrF. The new system stands out with a numerical aperture (NA) of 0.93 which will be the highest NA for 248 nm exposure wavelength available in the market. This in turn provides a more cost effective solution for patterning of features down to 80 nm in volume chip production.

"Together with our strategic partner ASML we have investigated customer needs initiating the development of Starlith® 1000. This demonstrates our continuing efforts to offer solutions to the semiconductor industry for cost-effective and highly reliable lithography processes. With Starlith® 1000 the application range of KrF lithography is further extended", Winfried Kaiser points out. The Vice President Product Strategy at Carl Zeiss SMT´s Lithography Optics division continues: This development has only been possible due to our long experience in innovative lens design for lithography and leading-edge manufacturing facilities we have in place at our new production site in Oberkochen, Germany."

With Starlith® 1000 Carl Zeiss SMT now offers a complete product portfolio of leading-edge lithography optics for each of the most advanced exposure wavelenghts/technologies: @ 248 nm/KrF - the new Starlith® 1000; @ 193 nm/ArF dry - the Starlith® 1450 and @ 193 nm immersion/ArF immersion - the Starlith® 1900i.

The Starlith® 1000 system will be part of ASML´s new TWINSCAN™ XT:1000 which will begin shipping in 2008.

####

About Carl Zeiss SMT AG
Carl Zeiss SMT utilizes its globally leading know-how in light, electron and ion-optical technologies to offer its customers in the manufacturing industry and R&D a broad portfolio of products, services and application solutions. The market-leading systems and solutions from Carl Zeiss SMT are used in mutually strengthening fields of application in nanotechnology such as semiconductor technology, materials research and the life sciences. The global customer community is constantly growing. As the innovation leader for lithography optics, as well as optical and particle-beam based inspection, analysis and measuring systems, Carl Zeiss SMT opens up new avenues for its customers in industrial manufacturing environments, quality assurance and industrial and university R&D. Together with its subsidiaries in Germany, England, France and the USA, the international group of companies has approximately 2,400 employees. In fiscal year 2005/06, Carl Zeiss SMT AG generated revenues of over EUR 860 billion. Carl Zeiss SMT AG is a wholly owned subsidiary of Carl Zeiss AG.

For more information, please click here

Contacts:
Press:
Carl Zeiss SMT AG
Public Relations
Markus Wiederspahn, +49 7364 20-2194

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project