Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > http://www.separationsnow.com/coi/cda/detail.cda?id=16683&type=Feature&chId=2&page=1

July 16th, 2007

http://www.separationsnow.com/coi/cda/detail.cda?id=16683&type=Feature&chId=2&page=1

Abstract:
The ability to separate single molecules by electrophoresis is fast becoming a reality, following the latest work by Swedish and French chemists into the transport mechanisms that hold sway in tiny lipid nanotubes. By monitoring the migration of different size nanoparticles at different electric potentials, the chemists discovered that these mechanisms are heavily dependent on the interaction between the solid nanoparticles and the soft nanotube walls.

In 2005, a team of chemists from Chalmers University of Technology, Göteborg, and the Institut Curie, Paris, including Björn Åkerman from Chalmers, showed that they could separate individual DNA strands in a lipid nanotube with a radius of only 150nm. To produce this nanotube, the chemists developed a technique in which they first create a fluid-filled unilamellar liposome (essentially a bubble of fat with a single bilayer membrane). Next, they insert two electrodes into opposite sides of the liposome and then withdraw one of the electrodes, pulling out a 125μm-long lipid nanotube.

Source:
separationsnow.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE