Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCSB researchers show how to make polymeric micro- and nanoparticles

Abstract:
Creating the particles essential to understanding the role of shape in particle function

UCSB researchers show how to make polymeric micro- and nanoparticles

Santa Barbara, CA | Posted on July 9th, 2007

Researchers in the College of Engineering at UC Santa Barbara have discovered how to make polymeric micro- and nanoparticles in a wide variety of different shapes and sizes using commonly-available lab chemicals and equipment. Knowing how to create these particles in the average laboratory environment will facilitate further discovery, as the particles are essential to understanding the role of shape in particle function. Their research is published in today's online edition of the Proceedings of the National Academy of Sciences.

Polymeric micro- and nanoparticles are used in a wide range of applications including medical imaging, drug delivery, and beauty and personal care products. These applications typically use spherical particles. While making particles in other shapes could be extremely useful, fabricating shapes other than spheres has been technically challenging.

The research team, led by Samir Mitragotri, a professor of chemical engineering, with Julie Champion, a graduate student, and Yogesh Katare, a post-doctoral researcher, used spherical polystyrene beads as a starting point. In one approach, the beads were liquefied by heat or solvents and then stretched. In the second, the beads were embedded in a polyvinyl alcohol film and the film was stretched to create voids around the beads. These voids were then filled by liquefying the beads using heat or solvent. From these two simple techniques, more than 20 different shapes were formed, ranging from simple rods and eggs to lenses, diamonds, food-shaped ravioli and tacos.

The methods used to create the potpourri of micro- and nanoparticles allow the researchers to control the size and shape of the particles created, a crucial factor in the development of nonspeherical particles in a variety of fields, including drug delivery, microbiology, advanced materials and rheology. This research was funded by the NIH program of excellence in nanotechnology.

####

For more information, please click here

Contacts:
Barbara Bronson Gray
818.889.5415


Samir Mitragotri
805.893.7532

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project