Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Engineers provide insight into the dynamics of molecular self-assembly

July 6th, 2007

Engineers provide insight into the dynamics of molecular self-assembly

Abstract:
By studying how a layer of molecules grows into an ordered layer from the edge of a rectangular silicon wafer, engineers at North Carolina State University, working with researchers from the National Institute of Standards and Technology (NIST), have established the time evolution of self-propagating self-assembly fronts. The team is the first to confirm the phenomenon in a real physical system.

The NC State researchers, Dr. Jan Genzer, professor of chemical and biomolecular engineering, and Dr. Kirill Efimenko, research assistant professor of chemical and biomolecular engineering, and NIST researchers, Dr. Jack Douglas, Dr. Daniel Fischer and Dr. Frederick Phelan, examined the spontaneous assembly of organosilane molecules into a monolayer film formed on an oxidized silicon surface.

They found that if a supply of the carbon-silicon-based molecule is placed along one edge of a treated silicon wafer, under controlled conditions, the organosilane molecules spontaneously organize themselves into a well-ordered layer, creating a carpet-like layer on the silicon that advances from the edge of the wafer at a constant velocity where the ordering initiates, ultimately covering the surface at long times. By following this process using a high resolution synchrotron X-ray technique and computer simulations, the NC State/NIST team established that the propagating wavefronts did not follow the constant width predicted by the classical mean-field theory that is widely believed to govern reaction-diffusion and self-assembly processes. (A wavefront is the leading edge of a wave or line of points that have the same phase or stage in a process.) What actually occurred is described as a "power-law broadening in time" when an autocatalyst is present.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Discoveries

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE