Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UC San Diego Establishes Department of NanoEngineering

Zinc oxide nanoscale cylinders could be the basis for an inexpensive new kind of light emitting diode. (Credit: UCSD)
Zinc oxide nanoscale cylinders could be the basis for an inexpensive new kind of light emitting diode. (Credit: UCSD)

Abstract:
Seeking to capitalize on the potential of a new generation of multi-functional nanoscale devices and special materials built on the scale of individual molecules, UC San Diego has established a new Department of NanoEngineering within its Jacobs School of Engineering effective July 1. Undergraduate and graduate students will learn from an interdisciplinary team of professors who are leaders in various fields of engineering, physics and chemistry and a variety of new sub-disciplines where those fields overlap.

UC San Diego Establishes Department of NanoEngineering

San Diego, CA | Posted on July 3rd, 2007

"Many of the most exciting, cutting-edge discoveries are being made at the interfaces of scientific and engineering disciplines," said UCSD Chancellor Marye Anne Fox. "This new Department of NanoEngineering, one of the first such departments in the nation, continues UC San Diego's leadership role in the paradigm shift to interdisciplinary research and education in revolutionary new fields that will benefit both society and the planet."

The new department will cover a broad range of topics, but focus particularly on biomedical nanotechnology, nanotechnologies for energy conversion, computational nanotechnology, and molecular and nanomaterials.

"Nanotechnology promises to produce revolutionary advances in medical diagnostics and treatments, energy systems, electronics and materials," said Frieder Seible, dean of the Jacobs School. "Yet we are only just beginning to understand how to assemble and fabricate nanocomponents into higher order materials. Our industry partners tell us they need a new breed of engineers trained in this field to help them fulfill their future workforce needs, not just on the biotechnology side, but in many other areas."

The Department of NanoEngineering's educational program will develop in phases, with plans to reach a steady state of approximately 20 faculty members and an enrollment of 400 undergraduate students and 120 graduate students. The department will also serve as the administrative home of the existing undergraduate and graduate programs in chemical engineering.

The Department of NanoEngineering is supported by faculty in the five other departments at the Jacobs School, and the new department is seeking collaborations with faculty throughout UCSD. The leadership team that was the driving force for creating the new department is made up of engineering professors Sadik Esener (Department of Electrical and Computer Engineering), Michael Heller (Department of Bioengineering), Sungho Jin (Department of Mechanical and Aerospace Engineering), Jan Talbot (Chemical Engineering program within the Department of Mechanical and Aerospace Engineering), and Kenneth Vecchio (Department of Mechanical and Aerospace Engineering).

In the past five years alone, the five members of the leadership team filed 51 patent applications and licensed 6 inventions to private companies. Those professors and their fellow faculty members will continue to work closely with the Jacob School's William J. von Liebig Center for Entrepreneurism and Technology Advancement and UCSD's Technology Transfer and Intellectual Property Services office to accelerate the commercialization of discoveries and prepare engineering students to contribute to the local, national, and global entrepreneurial workplace.

The new department will capitalize on a growing trend throughout public and private research-funding organizations to focus on nanoscience and nanotechnology approaches that have the potential to make valuable contributions to biology and medicine. For example, in recent solicitations for research proposals, the National Institutes of Health said, "A revolution has begun in science, engineering, and technology based on the ability to work on a nanoscale."

In a manifestation of that revolution, in September 2005 the National Cancer Institute implemented a $144 million initiative by forming eight Centers for Cancer Nanotechnology Excellence (CCNE) in the U.S., including one at UCSD and its Moores Cancer Center. Esener, a professor of electrical and computer engineering and the founder of several startup companies, is the principal investigator of the CCNE based at UCSD. That center, which includes scientists at the Burnham Institute for Medical Research and University of California campuses at Irvine, Riverside, and Santa Barbara, brings together the best and brightest from engineering, chemistry, physics, mathematics, biology and health sciences to use nanotechnology to help fight cancer. Esener's CCNE will work closely with the new Department of NanoEngineering.

The new department will occupy nearly half of a new 110,000-square-foot building, currently in the final stages of design that will be built by 2010. The building will house core instructional and laboratory area and complement the existing Nano3 facility at the UCSD division of the California Institute of Telecommunications and Information Technology (Calit2). The Nano3 facility provides an advanced cleanroom environment to UCSD researchers investigating nanoengineering, nanomedicine, and nanoscience.

The grassroots creation of the Department of NanoEngineering is an outgrowth of the strong tradition of "shared governance" of three branches: the Board of Regents, the administration, and the Academic Senate. This governance style of mutual helpfulness and collaboration in effect on all 10 UC campuses was invented by the University of California in the 1920s and has been credited with enabling the UC system to continually renew itself and do great things.

The growing commitment to nanoscience and nanotechnology at the Jacobs School and UC San Diego is part of a pioneering visionary approach to embrace promising new areas of study. For example, the Jacobs School established the first Department of Structural Engineering and one of the first Bioengineering departments in the nation. UCSD's Scripps Institution of Oceanography developed the nation's first curriculum in oceanography. The university also founded the first department of cognitive science in the world, underscoring its prowess in the scientific study of the nervous system. UCSD also has the nation's only international affairs school--the Graduate School of International Relations & Pacific Studies--to focus exclusively on the dynamic Pacific Rim basin.

####

About UC San Diego-Jacobs School of Engineering
The goal of the UCSD Jacobs School of Engineering is to be one of the leading and defining engineering schools in the world—a school known for the quality of its students, its stellar research programs, and an environment that fosters innovation and leadership.

For more information, please click here

Contacts:
Rex Graham
(858) 822-3075

Copyright © UC San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Academic/Education

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Patents/IP/Tech Transfer/Licensing

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

System creates on-demand 'nanotube forests,' has potential industry applications April 20th, 2016

Smaller. Cheaper. Better. Iron nitride transformers developed at Sandia could boost energy storage options March 28th, 2016

Correction: Solar fuels: Protective layer for the 'artificial leaf' March 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic