Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Researchers Hope to Unlock Capabilities of Carbon Nanotubes

UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.
UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.

Results of New Project Could Transform Electronics Industry

Researchers Hope to Unlock Capabilities of Carbon Nanotubes

RICHARDSON, TX | Posted on July 2nd, 2007

In a three-year project that researchers say could revolutionize the electronics industry, engineers at The University of Texas at Dallas are attempting to establish a standard means for tapping the potential of carbon nanotubes.

Ever since they emerged in the early 1990s, nanotubes have promised to enable a whole new wave of technology, including ultra-fast computers that leave today's machines in their dust. But despite advances in manufacturing the tiny graphite cylinders, there's still no standard approach for making electrical contact with them.

"We think carbon nanotubes are ideal candidates to be the building blocks of electronic devices of the future, but to exploit their unique properties you have to be able to connect them to the outside world," said Dr. Moon Kim, a professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and the project's principal investigator. "This will be the first time anyone has determined the extensive metal contacts that need to be established with nanotubes in order to incorporate them into new technology."

Carbon nanotubes are particularly attractive because of their ability to carry electrical current without dissipating much heat, and heat loss is one of the semiconductor industry's chief enemies as silicon chips' physical features become ever smaller.

Nanotubes themselves bring new meaning to the word "small." Their walls can be just one atom thick, forcing researchers to find a way to make an electrical connection between our big clunky world and nanotubes' almost impossibly small one.

The $225,000 grant that's funding the research is one of eight awarded through the new Nano-Bio-Information Technology Symbiosis program, or NBIT, jointly operated by the South Korean Ministry of Science and Technology and the U.S. Air Force Office of Scientific Research. The other U.S. universities receiving grants through the program are Harvard, Caltech, UC Berkeley, UCLA, UC San Diego, the University of Michigan and the University of Cincinnati.

"Not only is this research grant itself important, but it's part of a trend in which we've been successfully competing and collaborating with some of the most prestigious engineering schools in the country," said Dr. Bob Helms, dean of the Jonsson School. "And international collaborations like this are clearly going to be an increasingly important part of the way universities conduct research."

The eight grant winners emerged from a field of more than 50 research proposals submitted to NBIT. Each grant involves collaborative research between U.S. and Korean researchers. The UT Dallas researchers are collaborating with a team from South Korea's Sungkyunkwan University as well as a team from the University of Pittsburgh.


About UT Dallas
The University of Texas at Dallas, located at the convergence of Richardson, Plano and Dallas in the heart of the complex of major multinational technology corporations known as the Telecom Corridor, enrolls more than 14,500 students. The school’s freshman class traditionally stands at the forefront of Texas state universities in terms of average SAT scores. The university offers a broad assortment of bachelor’s, master’s and doctoral degree programs. For additional information about UT Dallas, please visit the university’s website at .

About the Erik Jonsson School of Engineering and Computer Science

The Erik Jonsson School of Engineering and Computer Science is one of the fastest-growing engineering schools in the United States. With nearly 3,000 students and more than 100 faculty, the school is in the midst of a $300 million initiative that includes the recent completion of a 192,000-square-foot interdisciplinary research building. Areas of research at the school include nanotechnology, human language technology, cybersecurity, telecommunications, bioengineering, and analog circuits and systems. For more information please visit .

For more information, please click here

Jenni Huffenberger
UT Dallas
(972) 883-4431

David Moore
UT Dallas
(972) 883-4183

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

Strange quantum phenomenon achieved at room temperature in semiconductor wafers November 21st, 2015

Stacking instead of mixing: Jülich-Aachen research team improves the energy efficiency of topological insulators November 21st, 2015

GLOBALFOUNDRIES Receives Quality Award from INOVA Semiconductors GmbH November 20th, 2015


Iranian Scientists Present Graphic Model for Interaction of Anti-HIV Drug, HIV Virus November 20th, 2015

A simple, rapid test to help ensure safer meat November 19th, 2015

New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

Are cars nanotube factories on wheels? Rice University, Paris colleagues: Study of lung cells suggests nanotubes are common pollutants October 20th, 2015


New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

GLOBALFOUNDRIES Achieves 14nm FinFET Technology Success for Next-Generation AMD Products: Leading-edge foundry’s proven silicon technology poised to help enable significant performance and power efficiency improvements for AMD’s next-generation products November 6th, 2015

USF team finds new way of computing with interaction-dependent state change of nanomagnets: University of South Florida engineering researchers find nano-scale magnets could compute complex functions significantly faster than conventional computers October 29th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015


Researchers find new, inexpensive way to clean water from oil sands production November 24th, 2015

Production of Nanocapsules Containing Omega-3 Powder in Iran November 24th, 2015

Tandem solar cells are simply better: Higher efficiency thanks to perovskite magic crystal November 24th, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015


GLOBALFOUNDRIES Receives Quality Award from INOVA Semiconductors GmbH November 20th, 2015

Oxford Instruments announces winner of the 2015 Sir Martin Wood Prize for leading young Japanese researchers November 20th, 2015

New method developed to predict response to nanotherapeutics: Taking a precision medicine approach to nanomedicine, researchers use MR imaging with magnetic nanoparticles to predict which tumors may be more responsive to therapeutic nanoparticles November 18th, 2015

Valley current control shows way to ultra-low-power devices November 16th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic