Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Hope to Unlock Capabilities of Carbon Nanotubes

UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.
UT Dallas researchers are using nickel electrodes to explore making electrical contact with a carbon nanotube that is about one-100,000th the width of a human hair.

Abstract:
Results of New Project Could Transform Electronics Industry

Researchers Hope to Unlock Capabilities of Carbon Nanotubes

RICHARDSON, TX | Posted on July 2nd, 2007

In a three-year project that researchers say could revolutionize the electronics industry, engineers at The University of Texas at Dallas are attempting to establish a standard means for tapping the potential of carbon nanotubes.

Ever since they emerged in the early 1990s, nanotubes have promised to enable a whole new wave of technology, including ultra-fast computers that leave today's machines in their dust. But despite advances in manufacturing the tiny graphite cylinders, there's still no standard approach for making electrical contact with them.

"We think carbon nanotubes are ideal candidates to be the building blocks of electronic devices of the future, but to exploit their unique properties you have to be able to connect them to the outside world," said Dr. Moon Kim, a professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and the project's principal investigator. "This will be the first time anyone has determined the extensive metal contacts that need to be established with nanotubes in order to incorporate them into new technology."

Carbon nanotubes are particularly attractive because of their ability to carry electrical current without dissipating much heat, and heat loss is one of the semiconductor industry's chief enemies as silicon chips' physical features become ever smaller.

Nanotubes themselves bring new meaning to the word "small." Their walls can be just one atom thick, forcing researchers to find a way to make an electrical connection between our big clunky world and nanotubes' almost impossibly small one.

The $225,000 grant that's funding the research is one of eight awarded through the new Nano-Bio-Information Technology Symbiosis program, or NBIT, jointly operated by the South Korean Ministry of Science and Technology and the U.S. Air Force Office of Scientific Research. The other U.S. universities receiving grants through the program are Harvard, Caltech, UC Berkeley, UCLA, UC San Diego, the University of Michigan and the University of Cincinnati.

"Not only is this research grant itself important, but it's part of a trend in which we've been successfully competing and collaborating with some of the most prestigious engineering schools in the country," said Dr. Bob Helms, dean of the Jonsson School. "And international collaborations like this are clearly going to be an increasingly important part of the way universities conduct research."

The eight grant winners emerged from a field of more than 50 research proposals submitted to NBIT. Each grant involves collaborative research between U.S. and Korean researchers. The UT Dallas researchers are collaborating with a team from South Korea's Sungkyunkwan University as well as a team from the University of Pittsburgh.

####

About UT Dallas
The University of Texas at Dallas, located at the convergence of Richardson, Plano and Dallas in the heart of the complex of major multinational technology corporations known as the Telecom Corridor, enrolls more than 14,500 students. The schoolís freshman class traditionally stands at the forefront of Texas state universities in terms of average SAT scores. The university offers a broad assortment of bachelorís, masterís and doctoral degree programs. For additional information about UT Dallas, please visit the universityís website at http://www.utdallas.edu .

About the Erik Jonsson School of Engineering and Computer Science

The Erik Jonsson School of Engineering and Computer Science is one of the fastest-growing engineering schools in the United States. With nearly 3,000 students and more than 100 faculty, the school is in the midst of a $300 million initiative that includes the recent completion of a 192,000-square-foot interdisciplinary research building. Areas of research at the school include nanotechnology, human language technology, cybersecurity, telecommunications, bioengineering, and analog circuits and systems. For more information please visit http://www.ecs.utdallas.edu .

For more information, please click here

Contacts:
Jenni Huffenberger
UT Dallas
(972) 883-4431


David Moore
UT Dallas
(972) 883-4183

Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project