Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Substance in tree bark could lead to new lung-cancer treatment

Dr. David Boothman (left), a professor in the Harold C. Simmons Comprehensive Cancer Center, and Dr. Erik Bey, a postdoctoral researcher in the center, are members of a research team that has determined how a substance derived from the bark of the South American lapacho tree kills certain kinds of cancer cells. Their findings may ultimately suggest a novel treatment for the most common type of lung cancer.

Credit: UT Southwestern Medical Center
Dr. David Boothman (left), a professor in the Harold C. Simmons Comprehensive Cancer Center, and Dr. Erik Bey, a postdoctoral researcher in the center, are members of a research team that has determined how a substance derived from the bark of the South American lapacho tree kills certain kinds of cancer cells. Their findings may ultimately suggest a novel treatment for the most common type of lung cancer.

Credit: UT Southwestern Medical Center

Abstract:
Researchers at UT Southwestern Medical Center have determined how a substance derived from the bark of the South American lapacho tree kills certain kinds of cancer cells, findings that also suggest a novel treatment for the most common type of lung cancer.

Substance in tree bark could lead to new lung-cancer treatment

Dallas, TX | Posted on June 25th, 2007

The compound, called beta-lapachone, has shown promising anti-cancer properties and is currently being used in a clinical trial to examine its effectiveness against pancreatic cancer in humans. Until now, however, researchers didn't know the mechanism of how the compound killed cancer cells.

Dr. David Boothman, a professor in the Harold C. Simmons Comprehensive Cancer Center and senior author of a study appearing online this week in the Proceedings of the National Academy of Sciences, has been researching the compound and how it causes cell death in cancerous cells for 15 years.

In the new study, Dr. Boothman and his colleagues in the Simmons Cancer Center found that beta-lapachone interacts with an enzyme called NQO1, which is present at high levels in non-small cell lung cancer and other solid tumors. In tumors, the compound is metabolized by NQO1 and produces cell death without damaging noncancerous tissues that do not express this enzyme.

"Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy," said Dr. Boothman, who is also a professor of pharmacology and radiation oncology.

In healthy cells, NQO1 is either not present or is expressed at low levels. In contrast, certain cancer cells - like non-small cell lung cancer - overexpress the enzyme. Dr. Boothman and his colleagues have determined that when beta-lapachone interacts with NQO1, the cell kills itself. Non-small cell lung cancer is the most common type of lung cancer.

Beta-lapachone also disrupts the cancer cell's ability to repair its DNA, ultimately leading to the cell's demise. Applying radiation to tumor cells causes DNA damage, which results in a further boost in the amount of NQO1 in the cells.

"When you irradiate a tumor, the levels of NQO1 go up," Dr. Boothman said. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill."

In the current study, Dr. Boothman tested dosing methods on human tumor cells using a synthesized version of beta-lapachone and found that a high dose of the compound given for only two to four hours caused all the NQO1-containing cancer cells to die.

Understanding how beta-lapachone works to selectively kill chemotherapy-resistant tumor cells creates a new paradigm for the care of patients with non-small cell lung cancer, the researchers said. They are hoping that by using a drug like beta-lapachone, they can selectively target cancer tumors and kill them more efficiently. The current therapy for non-small cell lung cancer calls for the use of platinum-based drugs in combination with radiation.

"Future therapies based on beta-lapachone and NQO1 interaction have the potential to play a major role in treating devastating drug-resistant cancers such as non-small cell lung cancer," said Dr. Erik Bey, lead author of the study and a postdoctoral researcher in the Simmons Cancer Center. "This is the first step in developing chemotherapeutic agents that exploit the proteins needed for a number of cellular processes, such as DNA repair and programmed cell death."

About 85 percent of patients with non-small cell lung cancer have cancer cells containing elevated levels of the NQO1 enzyme, which is produced by a certain gene. Patients who have a different version of the gene would likely not benefit from treatment targeting NQO1, Dr. Boothman said.

Dr. Boothman cautioned that clinical trials of beta-lapachone in lung cancer patients will be needed to determine its effectiveness as a treatment. He and his team have created a simple blood test that would screen patients for the NQO1 enzyme.

Along with Dr. Jinming Gao's laboratory in the Simmons Cancer Center and a joint collaboration with the bioengineering program at UT Dallas, researchers in the new "Cell Stress and Cancer Nanomedicine" initiative within the Simmons Cancer Center have developed novel nanoparticle drug delivery methods for the tumor-targeted delivery of this compound. These delivery methods have the promise of further improving this drug for non-small cell lung cancer.

Other Simmons Cancer Center researchers involved in the study were Dr. Ying Dong, postdoctoral researcher; Dr. Chin-Rang Yang, assistant professor; and Dr. Gao, associate professor. UT Southwestern's Dr. John Minna, director of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics, and Dr. Luc Girard, assistant professor of pharmacology, also participated along with researchers from Case Western Reserve University and UT M.D. Anderson Cancer Center.

The research was supported by the National Institutes of Health.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at
http://www.utsouthwestern.edu/receivenews

Dr. David Boothman -
http://www.utsouthwestern.edu/findfac/professional/0,2356,75335,00.html

####

For more information, please click here

Contacts:
Connie Piloto

214-648-3404

Copyright © UT Southwestern Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Human Interest/Art

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE